

OCTOBER 2024

MONTHLY CONSTRUCTION WATER QUALITY MONITORING REPORT

October 2024 Project No: 3200-0645 Project: Transgrid Maragle 500/330 kV Substation Private & Confidential

CONTENTS

1.	BACKGROUND							
2.	INTRODUCTION	INTRODUCTION						
3.	METHODOLOGY							
4.	BASELINE WATER QUALITY							
	4.1. Water Quality Objectives	17						
	4.2. Site Specific Guideline Values	17						
5.	OCTOBER 2024 MONITORING							
	5.1. Observations	18						
	5.2. Results	23						
	5.2.1. Key Physical and Chemical Parameters	23						
	5.2.2. Dissolved Metals	36						
	5.2.3. Total Metals	37						
	5.3. Discussion	37						
6.	CONCLUSION							
RE	ERENCES							

TABLES

TABLE 1 WATER QUALITY MONITORING LOCATIONS OUTLINED IN THE METHODOLOGY (NGH, 2022)	11
TABLE 2 SEASONAL SSGV (NGH, 2024) AND DGV (ANZG, 2018) FOR WATER QUALITY PARAMETERS	14
TABLE 3 FIELD OBSERVATIONS DURING SAMPLING	18
TABLE 4: RESULTS FOR DISSOLVED METALS	36
TABLE 5: RESULTS FOR TOTAL METALS	37

FIGURES

FIGURE 1 LOCALITY OF THE PROJECT AND SWQ MONITORING LOCATIONS	10
FIGURE 2 WATER QUALITY MONITORING LOCATIONS ASSOCIATED WITH REFERENCE SITE YR-RS AND TR-RS IN RELA	ATION TO
THE PROJECT	12
FIGURE 3 WATER QUALITY MONITORING LOCATIONS ASSOCIATED WITH REFERENCE SITE WC-RS IN RELATION TO T	HE
PROJECT	13
FIGURE 4 : TEMPERATURE FOR YARRANGOBILLY CATCHMENT	24
FIGURE 5: TEMPERATURE FOR TALBINGO RESERVOIR	24
FIGURE 6: TEMPERATURE FOR YORKERS CREEK CATCHMENT	24
FIGURE 7: PH FOR YARRANGOBILLY CATCHMENT	25
FIGURE 8: PH FOR TALBINGO RESERVOIR	25
FIGURE 9: PH FOR YORKERS CREEK CATCHMENT	25
FIGURE 10: DO FOR YARRANGOBILLY CATCHMENT	26
FIGURE 11: DO FOR TALBINGO RESERVOIR	26
FIGURE 12: DO FOR YORKERS CREEK CATCHMENT	26
FIGURE 13: SPC FOR YARRANGOBILLY CATCHMENT	27
FIGURE 14: SPC FOR TALBINGO RESERVOIR	27
FIGURE 15: SPC FOR YORKERS CREEK CATCHMENT	27
FIGURE 16: TURBIDITY FOR YARRANGOBILLY CATCHMENT	28
FIGURE 17: TURBIDITY FOR TALBINGO RESERVOIR	28
FIGURE 18: TURBIDITY FOR YORKERS CREEK CATCHMENT	28
FIGURE 19: TSS FOR YARRANGOBILLY CATCHMENT	29
FIGURE 20: TSS FOR TALBINGO RESERVOIR	29
FIGURE 21: TSS FOR YORKERS CREEK CATCHMENT	29
FIGURE 22: AMMONIA FOR YARRANGOBILLY CATCHMENT	30
FIGURE 23: AMMONIA FOR TALBINGO RESERVOIR	30
FIGURE 24: AMMONIA FOR YORKERS CREEK CATCHMENT	30
FIGURE 25: NITROGEN OXIDES FOR YARRANGOBILLY CATCHMENT	31
FIGURE 26: NITROGEN OXIDES FOR TALBINGO RESERVOIR	31
FIGURE 27: NITROGEN OXIDES FOR YORKERS CREEK CATCHMENT	31
FIGURE 28: TOTAL KJEDAHL NITROGEN FOR YARRANGOBILLY CATCHMENT	32
FIGURE 29: TOTAL KJEDAHL NITROGEN FOR TALBINGO RESERVOIR	32
FIGURE 30: TOTAL KJEDAHL NITROGEN FOR YORKERS CREEK CATCHMENT	32
FIGURE 31: TOTAL HARDNESS FOR YARRANGOBILLY CATCHMENT	33
FIGURE 32: TOTAL HARDNESS FOR TALBINGO RESERVOIR	33
FIGURE 33: TOTAL HARDNESS FOR YORKERS CREEK CATCHMENT	33
FIGURE 34: TOTAL NITROGEN FOR YARRANGOBILLY CATCHMENT	34
FIGURE 35: TOTAL NITROGEN FOR TALBINGO RESERVOIR	34
FIGURE 36: TOTAL NITROGEN FOR YORKERS CREEK CATCHMENT	34
FIGURE 37: TOTAL PHOSPHOROUS FOR YARRANGOBILLY CATCHMENT	35
FIGURE 38: TOTAL PHOSPHOROUS FOR TALBINGO RESERVOIR	35
FIGURE 39: TOTAL PHOSPHOROUS FOR YORKERS CREEK CATCHMENT	35

APPENDICES

APPENDIX A: FIELD SHEET (UGL, 2024) APPENDIX B: COA (ALS, 2024A), QA/QC ASSESSMENT (ALS, 2024B) AND QCR (ALS, 2024C) APPENDIX C: OCTOBER 2024 SWQ MONITORING RESULTS APPENDIX D: CALIBRATION CERTIFICATE

ABBREVIATIONS				
Acronym	Full Form			
ి	degrees Celsius			
μS/cm	micro Siemens per centimetre			
%	percent			
Ag	Silver			
Al	Aluminium			
ALS	ALS Limited			
ANZECC	Australian and New Zealand Environment and Conservation Council			
ANZG	Australian and New Zealand Guidelines			
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand			
As	Arsenic			
Baseline Report	'Baseline Water Quality Report' (NGH, 2024)			
CaCO₃	Total Hardness			
Cd	Cadmium			
СОА	'Certificate of Analysis' (ALS, 2024a)			
Cr	Chromium			
Cu	Copper			
DGV	Default Guideline Values			
DO	Dissolved Oxygen			
EC	Electrical Conductivity			
EIS	Environmental Impact Statement			
EPL	Environmental Protection Licence			
Fe	Iron			
Field Sheet	'Water Quality Monitoring Field Data Sheet' (UGL, 2024)			
Hg	Mercury			
km	kilometres			
km/h	kilometre per hour			
KNP	Kosciuszko National Park			
kV	kilovolt			
LOR	limit of reporting			
mg/L	milligram per litre			
mm	millimetre			
Mn	Manganese			
mV	millivolt			
NATA	National Association of Testing Authorities, Australia			
NEM	National Energy Market			

ABBREVIATIONS					
Acronym	Full Form				
NGH	NGH Pty Ltd				
Nickel					
NSW	New South Wales				
NTU	Nephelometric Turbidity Unit				
Pb	Lead				
ppm	parts per million				
Pty Ltd	Proprietary Limited				
QA/QC Assessment	'QA/QC Compliance Assessment to assist with Quality Review' (ALS, 2024b)				
QCR	'Quality Control Report' (ALS, 2024c)				
RS	Reference Site				
Snowy 2.0	Snowy Scheme expansion project (EPBC 2018/8322)				
Snowy Hydro Snowy Hydro Limited					
Snowy Scheme	Snowy Mountains Hydro-electric Scheme				
SPC	specific conductance				
SSGV Site Specific Guideline Values					
SW surface water					
SWQ	surface water quality				
TDS	Total Dissolved Solids				
The Methodology	'Pre-construction Water Quality Monitoring Program and Methodology' (NGH, 2022)				
The Project	Construction of a 330 kV substation and overhead transmission lines between Nurenmerenmong, NSW and Cabramurra, NSW				
TKN	Total Kjeldahl Nitrogen				
TN Total Nitrogen					
ТР	Total Phosphorus				
Transgrid	The Trustee for the NSW Electricity Operations Trust				
TSS	Total Suspended Solids				
UGL	UGL Limited				
WQO	water quality objectives				
Zn	Zinc				

1. BACKGROUND

In 2020 Snowy Hydro Limited (Snowy Hydro) obtained approval (EPBC 2018/8322) to expand the existing Snowy Mountains Hydro-electric Scheme (Snowy Scheme), by linking the existing Tantangara and Talbingo reservoirs through a series of underground tunnels and constructing a new underground hydro-electric power station (Snowy 2.0).

To connect Snowy 2.0 to the National Energy Market (NEM), a new transmission connection was required. The Trustee for the New South Wales (NSW) Electricity Operations Trust (TransGrid) is constructing a 330 kilovolt (kV) substation and overhead transmission lines (the Project) to facilitate the connection of Snowy 2.0 to the existing electrical transmission network. The Project is located within Kosciuszko National Park (KNP) between Nurenmerenmong and Cabramurra, NSW, approximately 27 kilometres (km) east of Tumbarumba, NSW (Figure 1). UGL Limited (UGL) has been engaged on behalf of Transgrid to undertake the Project.

2. INTRODUCTION

The Project is adjacent to, and forms part of, the Snowy 2.0 project area and is located within KNP, an area of high conservation value. A total of 22 mapped waterways, tributaries of Yarrangobilly River and Tumut River, transect the Project Boundary (Figure 1).

One of the conditions of approval to meet the requirements outlined in the 'Environmental Impact Statement' (EIS) (Jacobs, 2020) and the Project's Environmental Protection Licence (EPL 21753) is to undertake regular surface water quality (SWQ) monitoring to mitigate environmental impacts on SWQ.

Pre-construction SWQ monitoring was undertaken by NGH Pty Ltd (NGH) between March 2022 and February 2024 to determine site specific baseline values for SWQ parameters prior to Project construction works. The pre-construction SWQ monitoring was undertaken using the 'Pre-construction Water Quality Monitoring Program and Methodology' (the Methodology) developed by NGH in 2022 (refer Section 3). Two years of pre-construction SWQ monitoring was analysed and summarised in the 'Baseline Water Quality Report' (Baseline Report) (NGH, 2024). The results were used to determine seasonal Site Specific Guideline Values (SSGV) for ongoing SWQ monitoring during the construction phase.

Construction for the Project commenced in March 2024. Construction SWQ monitoring will be undertaken by UGL on a monthly basis as per the revised methodology outlined in Section 3 to identify potential changes to SWQ that may be associated with the Project. SW samples from the construction SWQ monitoring would be analysed and presented in monthly Construction Water Quality Monitoring Reports.

3. METHODOLOGY

The Methodology was prepared by NGH in 2022 to support the pre-construction SWQ monitoring for the Project. The Methodology detailed the water quality objectives (WQO) for the Project, identified the monitoring locations and outlined the methodology for surface water (SW) sampling during the pre-construction phase. The Methodology (NGH, 2022) took into account the Project location within an area of high conservation value where the WQO for physical and chemical stressors, as outlined in the 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality' (ANZG) (ANZG, 2018), includes no change in biodiversity beyond natural variability and where possible, there should also be no change in water/sediment chemical and physical properties, including toxicants.

Monitoring locations are outlined in Table 1. Figure 2 and Figure 3 show the water quality monitoring locations in relation to the Project and Snowy 2.0.

The Methodology (NGH, 2022) has been revised for construction SWQ monitoring by taking into account the seasonal SSGV set out in the Baseline Report (NGH, 2024) (refer to Section 4.2).

Construction SWQ monitoring would be analysed against the seasonal SSGV where available and appropriate. The Default Guideline Values (DGV) for Upland Rivers (ANZG, 2018) would be applied to water quality parameters that were not assessed in the Baseline Report (NGH, 2024) or where a guideline range is more appropriate. Table 2 outlines the seasonal SSGV and DGV used to compare construction SWQ to pre-construction SWQ.

WATER QUALITY MONITORING LOCATIONS								
ID	Waterway	Site Type	Catchment	Latitude	Longitude			
WC-RS	Wallace Creek	Reference		-35.794258	148.415253			
WC-IS	Wallace Creek	Impact	-	-35.792982	148.413404			
CG-IS	Cave Gully	Impact		-35.795495	148.406665			
YR1-IS	Yarrangobilly River	Impact	Yarrangobilly River	-35.793358	148.408277			
LHG-IS	Lick Hole Gully	Impact		-35.792890	148.400445			
YR2-IS	Yarrangobilly River	Impact		-35.784656	148.392921			
SSC-IS	Sheep Station Creek	Impact		-35.793243	148.391046			
TR-RS	R-RS Talbingo Reservoir Re		Talbingo Reservoir	-35.822094	148.365690			
YK-RS	Yorkers Creek	Reference		-35.801126	148.297979			
YK-IS (D/S)	Yorkers Creek	Impact	Varkara Craak	-35.782684	148.320040			
NZG-IS	New Zealand Gully	Impact	TOIKEIS CIEEK	-35.801575	148.318051			
YK-IS	Yorkers Creek	Impact		-35.792209	148.308878			

Table 1 Water quality monitoring locations outlined in the Methodology (NGH, 2022)

FIGURE 2 WATER QUALITY MONITORING LOCATIONS ASSOCIATED WITH REFERENCE SITE YR-RS AND TR-RS IN RELATION TO THE PROJECT

FIGURE 3 WATER QUALITY MONITORING LOCATIONS ASSOCIATED WITH REFERENCE SITE WC-RS IN RELATION TO THE PROJECT

Table 2 Seasonal SSGV (NGH, 2024) and DGV (ANZG, 2018) for water quality parameters

SURFACE WATER QUALITY GUIDELINE VALUES

Parameter	Unit	WC-RS		TR-RS		YK-RS		DGV
		SSGV (Summer/Autumn)	SSGV (Winter/Spring)	SSGV (Summer/Autumn)	SSGV (Winter/Spring)	SSGV (Summer/Autumn)	SSGV (Winter/Spring)	
Temperature	°C*	-	-	-	-	-	-	-
Dissolved Oxygen (DO) ***	%#	96.2	89.7	91.3	95.5	89.6	88.7	90-110
DO	ppm⁺	9.08	10.28	8.79	11.53	8.35	10.2	-
Specific Electrical Conductivity (EC)***	SPC [^] μS/cm ^{^^}	115	88	24	38.7	31	27.9	30-350
EC***	μS/cm	93.2	60.85	20.3	26.2	24	20.5	30-350
pH***	-	7.85	7.62	7.59	7.59	6.79	6.61	6.5-8
Redox	mV##	79.1	98.4	91.2	95.4	94.6	106.1	-
Turbidity***	NTU**	0.37	5.12	0.09	1.56	9	7.87	2-25
Dissolved Aluminium (Al)	mg/L++	0.03	0.04	0.03	0.015	0.36	0.32	0.027
Dissolved Arsenic (As)	mg/L	0.003	0.0003	0.003	0.0003	0.003	0.0003	0.0008
Dissolved Cadmium (Cd)	mg/L	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.0006
Dissolved Chromium (Cr)	mg/L	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
Dissolved Copper (Cu)	mg/L	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.001
Cyanide	mg/L	0.002	0.002	0.002	0.002	0.002	0.002	0.004
Dissolved Iron (Fe)	mg/L	0.03	0.02	0.04	0.02	0.41	0.23	0.3
Dissolved Lead (Pb)	mg/L	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Dissolved Manganese (Mn)	mg/L	0.002	0.002	0.003	0.002	0.005	0.003	1.2
Dissolved Mercury (Hg)	mg/L	0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00006

SURFACE WATER QUALITY GUIDELINE VALUES Unit WC-RS **TR-RS** YK-RS DGV **Parameter** SSGV SSGV SSGV SSGV SSGV SSGV (Summer/Autumn) (Winter/Spring) (Summer/Autumn) (Winter/Spring) (Winter/Spring) (Summer/Autumn) 0.001 **Dissolved Nickel (Ni)** 0.001 0.001 0.001 0.001 0.001 0.008 mg/L 0.2 0.2 Total Nitrogen (TN) mg/L 0.2 0.2 0.2 0.2 0.25 Total Phosphorus (TP) mg/L 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Dissolved Silver (Ag) 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 mg/L mg/L 0.002 0.002 0.002 0.002 0.002 0.002 Dissolved Zinc (Zn) 0.0024 mg/L 0.013 0.013 0.013 0.013 0.013 0.013 0.013 Ammonia Nitrogen Oxides 0.015 0.015 0.015 0.015 0.015 0.015 mg/L 0.015 **Reactive Phosphorous** mg/L 0.02 0.015 0.02 0.015 0.02 0.02 0.015 30 7.5 8 7 Total Hardness (CaCO₃) mg/L 47 1 -Total Kjeldahl Nitrogen 0.2 0.2 mg/L 0.1 0.2 0.1 0.2 -(TKN) Total Dissolved Solids (TDS) 52 39 12.5 15 30 10 mg/L _ Total Suspended Solids (TSS) mg/L 0.2 1 0.2 0.2 3 0.2 0.2 Total Al[@] mg/L 0.027 ----_ -Total As[@] mg/L -0.0008 ---_ _ Total Cd[@] mg/L 0.0006 ------Total Cr[@] mg/L -0.00001 ---Total Cu[@] mg/L -0.001 ---_ _ Total Pb[@] mg/L ---_ _ _ 0.001 Total Mn[@] mg/L 1.2 ----_ -Total Ni[@] mg/L ----_ -0.008

SURFACE WATER QUALITY GUIDELINE VALUES

Parameter	Unit	WC-RS		TR-RS		YK-RS		DGV
		SSGV	SSGV	SSGV	SSGV	SSGV	SSGV	
		(Summer/Autumn)	(Winter/Spring)	(Summer/Autumn)	(Winter/Spring)	(Summer/Autumn)	(Winter/Spring)	
Total Ag [@]	mg/L	-	-	-	-	-	-	0.00002
Total Zn [@]	mg/L	-	-	-	-	-	-	0.0024
Total Fe [@]	mg/L	-	-	-	-	-	-	0.3
Total Hg [@]	mg/L	-	-	-	-	-	-	0.00006
* °C = degrees Celsius	# % = percent	## n	nV = millivolt	+ ppm = parts per	million ^ S	PC = specific conductance	++ mg/L = milligr	am per litre

** NTU = Nephelometric Turbidity Unit $^{\Lambda}$ μ S/cm = micro Siemens per centimetre

- [@] parameter not analysed by NGH

SPC = specific conductance *** assessed against DGV where guideline range is more appropriate for the parameter

4. BASELINE WATER QUALITY

4.1. Water Quality Objectives

Water quality objectives are outlined in Section 2.1 of the Baseline Report (NGH, 2024).

4.2. Site Specific Guideline Values

In accordance with the ANZG (ANZG, 2018), SSGV for the three Reference Sites (RS) (WC-RS, TR-RS and YK-RS) were derived from the results collected during the 24 month pre-construction SWQ monitoring period. The SSGV reflect the seasonality observed in the baseline data and are characterised by the drier months of Summer/Autumn (December to May) and wetter months of Winter/Spring (June to November) in accordance with the 'Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) (2000) methodology and derivatives developed to 2018 of the ANZG (ANZG, 2018).

Table 2 outlines the seasonal SSGV provided in the Baseline Report (NGH, 2024).

5. OCTOBER 2024 MONITORING

SW sampling was undertaken at 12 monitoring locations on 16 October 2024.

In accordance with the methodology outlined in Section 3, SW samples were either measured in situ using a calibrated YSI ProDSS Sonde Multiparameter Digital Water Quality Meter (refer to Appendix D) or analysed by National Association of Testing Authorities, Australia (NATA) accredited ALS Limited (ALS) laboratory. However, the following parameters were not measured:

- DO (ppm)
- EC (μS/cm)
- Redox (mV)

The 'Water Quality Monitoring Field Data Sheet' (Field Sheet) (UGL, 2024) is provided in Appendix A. The 'Certificate of Analysis' (COA) (ALS, 2024a), 'QA/QC Compliance Assessment to assist with Quality Review' (QA/QC Assessment) (ALS, 2024b) and 'Quality Control Report' (QCR) (ALS, 2024c) are attached in Appendix B.

5.1. **Observations**

Field observations during sampling are summarised in Table 3.

Table 3 Field observations during sampling

FIELD OBSERVATIONS						
Date	16.10.2024					
Weather	Sunny conditions on the day of sampling, with winds reaching a maximum of 24 kilometre per hour (km/h). A total of 3.4 millimetre (mm) rainfall was observed the day prior to sampling (15 October), with other notable rainfall events occurring on 5 October (15.4 mm), and 3 October (9.4 mm).					
ID	Observations	Photo				
WC-RS	 Clear water and high flow rate Vegetation along banks Oxygen bubbling on surface 					

FIELD OBSERVATIONS 16.10.2024 Date Weather Sunny conditions on the day of sampling, with winds reaching a maximum of 24 kilometre per hour (km/h). A total of 3.4 millimetre (mm) rainfall was observed the day prior to sampling (15 October), with other notable rainfall events occurring on 5 October (15.4 mm), and 3 October (9.4 mm). ID **Observations** Photo • Clear water and high flow rate • Strong weed/vegetation growth on northern bank • Bubbles of air on the surface • Build-up of sticks and debris at sampling point WC-IS Clear water, minimal flow ٠ Visible sediment sticks and bark in water Flora growing underwater CG-IS High flow rate, slight milky colouration • No sediment observed • YR1-IS

FIELD OBSERVATIONS 16.10.2024 Date Weather Sunny conditions on the day of sampling, with winds reaching a maximum of 24 kilometre per hour (km/h). A total of 3.4 millimetre (mm) rainfall was observed the day prior to sampling (15 October), with other notable rainfall events occurring on 5 October (15.4 mm), and 3 October (9.4 mm). ID **Observations** Photo • High silt deposition on bottom of the waterbody Shallow wide gully • Vegetation growing in and around gully Very little flow LHG-IS • High flow rate, high volume flow Slight milky colouration, slight yellow/brown Oxygen bubbling YR2-IS • Slight milky colouration Fine sediment on base of waterbody Sticks and debris in the waterway Vegetation along both banks ٠ SSC-IS

FIELD OBSERVATIONS 16.10.2024 Date Weather Sunny conditions on the day of sampling, with winds reaching a maximum of 24 kilometre per hour (km/h). A total of 3.4 millimetre (mm) rainfall was observed the day prior to sampling (15 October), with other notable rainfall events occurring on 5 October (15.4 mm), and 3 October (9.4 mm). ID **Observations** Photo • High water level, relatively clear, becomes unclear at depth • Sand and gravel on bottom of waterbody TR-RS • Very slight milky colouration to water Sand and gravel evident in base of waterbody Thick vegetation cover on either bank YK-IS (D/S) Thick vegetation cover on either banks ٠ Metals visible in water Hoof marks on bank several meters up from the sampling point NZG-IS

FIELD OBSERVATIONS 16.10.2024 Date Weather Sunny conditions on the day of sampling, with winds reaching a maximum of 24 kilometre per hour (km/h). A total of 3.4 millimetre (mm) rainfall was observed the day prior to sampling (15 October), with other notable rainfall events occurring on 5 October (15.4 mm), and 3 October (9.4 mm). ID **Observations** Photo • Slight milky colouration • Sticks/debris along Creek • Vegetation present along both banks Green looking algae observed Silt upstream • YK-IS • Slight yellow/brown colouration Grasses/vegetation on either bank Fine sediment settled at the bottom, visible sand • size particles YK-RS

5.2. Results

The results from the construction SWQ monitoring program have been reported for each respective catchment: Yarrangobilly River, Talbingo Reservoir, and Yorkers Creek.

- **Yarrangobilly River catchment** monitoring includes the reference site at Wallace Creek and impact sites at Yarrangobilly River, Wallace Creek, Cave Gully, Lick Hole Gully, and Sheep Station Creek.
- Yorkers Creek catchment monitoring includes the reference site at Yorkers Creek and impact sites at Yorkers Creek and New Zealand Gully.
- **Talbingo Reservoir** features a reference site located upstream within the reservoir, serving as an overall reference for monitoring sites in the Yarrangobilly River and Yorkers Creek catchments.

This reference site provides a baseline for the SWQ monitoring program.

The SWQ monitoring results for key physical and chemical parameters, along with site-specific trigger values, are detailed in Section 5.2.1. Results for dissolved and total metals, including site-specific trigger values, are covered in Sections 5.2.2 and 5.2.3. Upon review of the data, observations were noted between the reference and impact sites.

The complete table of results is attached in Appendix C.

5.2.1. Key Physical and Chemical Parameters

See below for results of key physical and chemical parameters.

Temperature

In October 2024, temperatures in the Yarrangobilly catchment experienced a slight decrease compared to the previous month, ranging from 9.3 °C to 12.7 °C, refer to Figure 4. Similarly, temperatures in the Talbingo Reservoir dropped from 10.2 °C in September 2024 to 9.5 °C in October 2024, refer to Figure 5. In contrast, the Yorkers Creek catchment showed a significant increase, with temperatures ranging from 11.1 °C to 18.3 °C during October 2024, as illustrated in Figure 6.

FIGURE 4 : TEMPERATURE FOR YARRANGOBILLY CATCHMENT

FIGURE 6: TEMPERATURE FOR YORKERS CREEK CATCHMENT

рΗ

pH values across all sites were within the SSGV range (6.5 to 8.0) in October 2024, with the exception of CG-IS, which recorded a value of 8.17, refer Figure 7 to Figure 9.

FIGURE 7: PH FOR YARRANGOBILLY CATCHMENT

FIGURE 9: PH FOR YORKERS CREEK CATCHMENT

Dissolved Oxygen

DO (%) levels in the Yarrangobilly catchment were within the SSGV range (90 to 100), except at LHG-IS and SSC-IS, which showed slight decreases compared to the previous month, refer Figure 10. In the Talbingo Reservoir, DO values remained consistent with the SSGV range, refer Figure 11. In the Yorkers Creek catchment, all DO levels continued to fall below the SSGV, aligning with baseline monitoring for this period, refer Figure 12.

FIGURE 10: DO FOR YARRANGOBILLY CATCHMENT

FIGURE 11: DO FOR TALBINGO RESERVOIR

FIGURE 12: DO FOR YORKERS CREEK CATCHMENT

Specific Conductance

SPC (μ S/cm) results for the Yarrangobilly catchment showed that all sites were below the June to November SSGV threshold (88 μ S/cm), except for SSC-IS, which moderately exceeded the SSGV at 110.3 μ S/cm. LHG-IS and CG-IS were significantly above the SSGV, recording values of 432.4 μ S/cm and 382.8 μ S/cm, respectively, consistent with baseline data, refer Figure 13. In contrast, Talbingo Reservoir remained below the June to November SSGV (38.7 μ S/cm), recording 15.3 μ S/cm in October 2024, refer Figure 14. Specific conductance in the Yorkers Creek catchment was also below the June to November SSGV (27.9 μ S/cm) at all sites, except NZG-IS, which recorded 39.6 μ S/cm in October 2024, refer to Figure 15.

FIGURE 13: SPC FOR YARRANGOBILLY CATCHMENT

FIGURE 15: SPC FOR YORKERS CREEK CATCHMENT

Turbidity

Turbidity (NTU) levels in the Yarrangobilly catchment were below the June to November SSGV (5.12) at all sites, except for SSC-IS, which slightly exceeded the threshold with a value of 8.9, refer Figure 16. Turbidity at the reference sites in Talbingo Reservoir (TR-RS) and Yorkers Creek (YK-RS) remained above the SSGV for their respective catchments. In contrast, all impact sites within the Yorkers Creek catchment were either below the limit of reporting (LOR) or within the SSGV, refer Figure 17 and Figure 18.

Total Suspended Solids

TSS (mg/L) levels in the Yarrangobilly catchment exceeded the June to November SSGV (1.0 mg/L) at WC-IS (2.0 mg/L), YR1-IS (2.0 mg/L), and LHG-IS (3.0 mg/L), while all other sites were below the LOR, refer Figure 19. At Talbingo Reservoir (TR-RS), TSS also exceeded the SSGV (0.2 mg/L), recording 4.0 mg/L in October 2024 (see Figure 20). In the Yorkers Creek catchment, all sites recorded TSS levels above the SSGV (0.2 mg/L), with the reference site YK-RS showing the highest value at 22.0 mg/L, refer to Figure 21.

FIGURE 19: TSS FOR YARRANGOBILLY CATCHMENT

Ammonia

Ammonia (mg/L) levels in the Yarrangobilly catchment were below the LOR at all sites except for YR1-IS and LHG-IS, which both recorded values of 0.02 mg/L, moderately exceeding the SSGV of 0.013 mg/L, refer Figure 22. Talbingo Reservoir (TR-RS) also showed ammonia levels slightly above the SSGV, recording 0.04 mg/L in October 2024, refer Figure 23. In the Yorkers Creek catchment, ammonia levels were below the LOR at most sites, except for YK-IS (D/S) and NZG-IS, which recorded values of 0.03 mg/L and 0.02 mg/L, respectively, both moderately exceeding the SSGV, refer Figure 24.

FIGURE 22: AMMONIA FOR YARRANGOBILLY CATCHMENT

Nitrogen Oxides

Nitrogen Oxides (mg/L) levels exceeded the June to November SSGV (0.015 mg/L) at all reference sites and several impact sites. Reference sites WC-RS, TR-RS, and YK-RS recorded values slightly above the SSGV, ranging from 0.02 mg/L to 0.05 mg/L. Impact sites exceeding the SSGV included WC-IS (0.02 mg/L), SSC-IS (0.18 mg/L), YK-IS (D/S) (0.11 mg/L), and NZG-IS (0.07 mg/L). All other sites were below the LOR, refer Figure 25 to Figure 27.

FIGURE 26: NITROGEN OXIDES FOR TALBINGO RESERVOIR

Total Kjeldahl Nitrogen

TKN (mg/L) was below either the LOR or the June to November SSGV (0.02 mg/L) at all sites refer Figure 28 to Figure 30.

FIGURE 29: TOTAL KJEDAHL NITROGEN FOR TALBINGO RESERVOIR

FIGURE 30: TOTAL KJEDAHL NITROGEN FOR YORKERS CREEK CATCHMENT

Total Hardness

CaCO₃ (mg/L) levels in the Yarrangobilly catchment exceeded the June to November SSGV (30 mg/L) at all sites, with CG-IS and LHG-IS recording significantly elevated values of 294 mg/L and 312 mg/L respectively, refer Figure 31. Talbingo Reservoir (TR-RS) also exceeded the June to November SSGV (8.0 mg/L), with a recorded value of 14 mg/L, consistent with the previous month, refer Figure 32. In the Yorkers Creek catchment, the reference site (YK-RS) and the impact site (YK-IS (D/S)) were below the June to November SSGV (7.0 mg/L), each recording 5.0 mg/L. The remaining two impact sites, NZG-IS and YK-IS, exceeded the SSGV with values ranging from 12 mg/L to 21 mg/L, refer to Figure 33.

FIGURE 31: TOTAL HARDNESS FOR YARRANGOBILLY CATCHMENT

FIGURE 33: TOTAL HARDNESS FOR YORKERS CREEK CATCHMENT

Total Nitrogen

TN (mg/L) levels were either below the LOR or within the June to November SSGV (0.2 mg/L) at all sites, except for SSC-IS in the Yarrangobilly catchment and YK-IS (D/S) and NZG-IS in the Yorkers Creek catchment. The exceedances at these impact sites were minor, with TN values ranging from 0.3 mg/L to 0.4 mg/L, refer Figure 34 to Figure 36.

FIGURE 35: TOTAL NITROGEN FOR TALBINGO RESERVOIR

FIGURE 36: TOTAL NITROGEN FOR YORKERS CREEK CATCHMENT

Total Phosphorous

TP (mg/L) levels in the Yarrangobilly catchment and Talbingo Reservoir were below the June to November SSGV (0.02 mg/L) at most sites, except for WC-IS, which recorded a value of 0.03 mg/L, and YR2-IS, which recorded 0.05 mg/L, both exceeding the SSGV, refer Figure 37 and Figure 38. In the Yorkers Creek catchment, TP values exceeded the June to November SSGV at all monitored sites, refer to Figure 39.

FIGURE 37: TOTAL PHOSPHOROUS FOR YARRANGOBILLY CATCHMENT

FIGURE 39: TOTAL PHOSPHOROUS FOR YORKERS CREEK CATCHMENT

5.2.2. Dissolved Metals

Dissolved metals exceeding the SSGV are listed in Table 4.

Table 4: Results for Dissolved Metals

DISSOLVED METALS RESULTS								
Analyte	Site	Result (mg/L)	SGV (mg/L)	Comment				
A I	SSC-IS	0.08	0.04	Al (mg/L) levels were below the June to November SSGV at all				
AI	TR-RS	0.04	0.015	the SSGV.				
Fe	LHG-IS	0.10	0.02	Fe (mg/L) levels exceeded the June to November SSGV at LHG-IS, while all other sites were either below the LOR or within their respective catchment SSGV.				
	LHG-IS	0.036	0.002					
	TR-RS	0.008	0.002	The reference sites at Talbingo Reservoir and Yorkers Creek,				
N 4.0	YK-RS	0.013						
IVIN	YK-IS (D/S)	0.010	0.000	SSGV. LHG-IS was significantly above the SSGV.				
	NZG-IS	0.008	0.003					
	YK-IS	0.004						
	YR1-IS	0.006		Zn (mg/L) levels were below the LOR or within the June to				
Zn	TR-RS	0.013	0.002	November SSGV at all sites, except for YR1-IS, TR-RS, and YK-IS				
	YK-IS (D/S)	0.009		(D/S), which exceeded the SSGV.				

5.2.3. Total Metals

Total metals exceeding the DGV are listed in Table 5.

Table 5: Results for Total Metals

ΤΟΤΑ								
Analyte	Site	Result (mg/L)	SGV (mg/L)	Comment				
	WC-RS	0.07						
	WC-IS	0.08						
	YR1-IS	0.08						
	LHG-IS	0.04						
	YR2-IS	0.07	0.027	Al (mg/L) exceeded the DGV at all reference sites and impact sites.				
AI	SSC-IS	0.13						
	TR-RS	0.07						
	YK-RS	0.24						
	YK-IS (D/S)	0.22						
	NZG-IS	0.17						
	YC-IS	0.14						
Fe	YK-RS	0.45	0.3	The reference site at Yorkers Creek (YK-RS) recorded Fe (mg/L) levels exceeding the DGV, while all other sites were either below the LOR or within the DGV.				

5.3. Discussion

Below is a summary of key observations and discussion points from the October monitoring results:

- Transmission line clearing and bulk earthworks activities were ongoing within the Yarrangobilly and Yorkers Creek catchment areas
- Impact sites within the Yarrangobilly catchment are influenced by other activities associated with the Snowy 2.0 project
- Cave Gully (CG-IS) had flowing water for the first time since the commencement of construction
- Fine sediment or sand was observed within the waterways at all sites within the Yorkers Creek catchment
- Horse hoof marks were evident on the bed and banks of the sampling site at New Zealand Gully (NZG-IS) within the Yorkers Creek Catchment
- Many of the results are recorded as below (<) the LOR
- The SSGV/DGV for a number of parameters is lower than the LOR from the laboratory
- Lick Hole Gully (LHG-IS) within the Yarrangobilly catchment was observed as being shallow with high silt deposition and low flow at the time of sampling. LGH-IS consistently recorded higher values across multiple parameters
- Temperature declined in Yarrangobilly and Talbingo in October but rose significantly in Yorkers Creek

- pH was mostly stable, with one exceedance in October at CG-IS
- DO showed marginal declines in October at some Yarrangobilly sites; consistent non-compliance in Yorkers Creek
- SPC and Turbidity showed similar patterns across both months, with consistent exceedances at specific sites
- Variability in ammonia and TN exceedances between months; TP consistently elevated in Yorkers Creek
- Persistent exceedances for dissolved Al, Fe, Mn, and Zn
- Total metals, particularly Al and Fe, showed widespread exceedances, with YK-RS recording the highest Fe levels in October

6. CONCLUSION

The results from the construction SWQ monitoring program were reported for three key catchments: Yarrangobilly River, Talbingo Reservoir, and Yorkers Creek. Each catchment had a reference site, with impact sites also monitored for comparison. Key parameters such as temperature, pH, DO, SPC, turbidity, TSS, ammonia, nitrogen oxides, TKN, CaCO₃, TN, TP and metals (both dissolved and total) were analysed.

In October 2024, temperatures in the Yarrangobilly catchment and Talbingo Reservoir showed slight decreases compared to September, while the Yorkers Creek catchment experienced a significant increase.

pH levels remained within the SSGV range (6.5 to 8.0) at most sites, except CG-IS in the Yarrangobilly catchment, which slightly exceeded the guideline. DO levels in the Yarrangobilly catchment generally met the SSGV, with minor declines at LHG-IS and SSC-IS, while Talbingo Reservoir remained compliant, and Yorkers Creek sites fell below the guideline. SPC exceeded the SSGV at SSC-IS, LHG-IS, and CG-IS in the Yarrangobilly catchment but aligned with baseline data, while Talbingo Reservoir and most Yorkers Creek sites remained within limits except NZG-IS, which showed a minor exceedance.

Turbidity levels were generally below the SSGV, except at SSC-IS in the Yarrangobilly catchment and the reference sites in Talbingo Reservoir and Yorkers Creek. TSS exceeded the SSGV at several Yarrangobilly sites and at all Yorkers Creek sites, with YK-RS recording the highest value.

Ammonia levels were typically below the LOR, with slight exceedances at YR1-IS, LHG-IS, TR-RS, YK-IS (D/S), and NZG-IS. Nitrogen Oxides exceeded the SSGV at all reference sites and multiple impact sites, with SSC-IS and YK-IS (D/S) showing the highest levels. TKN remained below the SSGV or LOR across all sites. Total Hardness (CaCO₃) exceeded the SSGV at all Yarrangobilly sites, with particularly high values at LHG-IS and CG-IS, while Talbingo Reservoir and some Yorkers Creek sites also exceeded the guideline. TN was generally below the SSGV, with minor exceedances at SSC-IS in Yarrangobilly and YK-IS (D/S) and NZG-IS in Yorkers Creek. TP exceeded the SSGV at WC-IS and YR2-IS in Yarrangobilly and at all Yorkers Creek sites. Dissolved metals showed exceedances for Al, Fe, Mn, and Zn, with LHG-IS displaying significant levels of Fe and Mn, and Zn exceeding the SSGV at YR1-IS, TR-RS, and YK-IS (D/S). Total metals exceeded the DGV for Al and Fe at multiple sites, with YK-RS recording the highest Fe levels.

REFERENCES

ALS. (2024a). ES2434038. Certificate of Analysis. NSW, Australia: ALS Limited.

ALS. (2024b). ES2434038. QA/QC Compliance Assessment to assist with Quality Review. NSW, Australia: ALS Limited.

ALS. (2024c). ES2434038. Quality Control Report. NSW, Australia: ALS Limited.

ANZG. (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. ACT, Australia: Australian and New Zealand Governments and Australian state and territory governments.

Jacobs. (2020). Environmental Impact Statement. NSW: Transgrid.

NGH. (2022). Pre-construction Water Quality Monitoring Program and Methodology. NSW: NGH Pty Ltd.

NGH. (2024). Baseline Water Quality Report. NSW: NGH Pty Ltd.

UGL. (2024). October 2024. Water Quality Monitoring Field Data Sheet. NSW, Australia: UGL Limited.

Appendix A: Field Sheet (UGL, 2024)

Water Quality Monitoring Field Data Sheet

ate:			S	ample Run:					Sampling	g Purpose	e: Samplers:
Sample ID	Sample Location	Time	Temp (^o C)	Water Pressure (mmHg)	Dissolved Oxygen (%)	Conductivity (SPC-µS/cm)	рН	Turbidity FNU	TSS (mg/L)	Water level	Description
36C- 13 YR2-TO	East	8:51	10.1	M.	81.5	110 3	6.83	1.76 0000.1	-M		slightly turbid, colouration. Very fine sediment on base of waterbody. Sticks & leaves on banks & in water Chear water, colouration (brown yellow). Tannons in water,
WK-RS	East	9:41	9.3	4	92.7	52.0	7.55	500-3	34		high flow, while tops with 02 bubbles Clear, high flow rate, oxygen bubbling
YRI-IS	East	9:58 10:35	12.5	4	93.3 94.9	66.8	7.77	1. Co.	35/1		Slight yellow colouration, very clear
LH 6-15	East East	11:14	12.4	4	86.5 93.2	432.4 382.8	7.59	2.18 0.12	4		Growing in water. Very little flow Usible sediment, sticks & bark debris in water. flora growing in water
TR-RS	Reservoir	13:53	9.5	h	95.Z 87.8	15.3	7.78 7.55	0.27 15.76	4		sand & gravel on bottom of wederbody, unclear at depth Light brown colouration, visible sand & metals
YK - 33	West	15:22	13.7	4	86.3	23.7	7.83	5.02	4		Green coloured algae observed, silt upstream. Sand & small growel on base of waterbody, sticks in waterbody.
NZG-IS	West	15:57	11.1	2	84.5	39.6	7.47	3.39	44		Light colouration Metals usible in water, rocks & gravel on ground of wederbody. Animal tracks on band

Appendix B: COA (ALS, 2024a), QA/QC Assessment (ALS, 2024b) and QCR (ALS, 2024c)

CERTIFICATE OF ANALYSIS Work Order : ES2434038 Page : 1 of 8 Client : UGL LIMITED Laboratory : Environmental Division Sydney Contact : CAMILLE PALMER Contact : Customer Services ES Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : Cnr Hill Rd & Pondage Link Rd HOMEBUSH BAY 2127 Telephone Telephone : +61-2-8784 8555 -----Project : 3200-0645 TransGrid Maragle 500/330kV Station. (Event 8C) Date Samples Received : 18-Oct-2024 10:00 Order number : 4501837828 Date Analysis Commenced : 19-Oct-2024 C-O-C number Issue Date : ----· 25-Oct-2024 17:13 Sampler : Lachlan Whiteford Site : Maragle/Lobs Hole Quote number : ES24UGLLIM0001 V3 "Inhahata Accreditation No. 825

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Accredited for compliance with ISO/IEC 17025 - Testing

This Certificate of Analysis contains the following information:

: 12

: 12

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EG020: It is recognised that total concentration is less than dissolved for some metal analytes. However, the difference is within experimental variation of the methods.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	WC-RS	WC-IS	YR1-RS	LHG-IS	YR2-RS
		Sampli	ng date / time	16-Oct-2024 09:00	16-Oct-2024 09:40	16-Oct-2024 10:15	16-Oct-2024 10:45	16-Oct-2024 11:05
Compound	CAS Number	LOR	Unit	ES2434038-001	ES2434038-002	ES2434038-003	ES2434038-004	ES2434038-005
				Result	Result	Result	Result	Result
EA015: Total Dissolved Solids dried at 18	0 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	46	39	60	362	71
EA025: Total Suspended Solids dried at 1	04 ± 2°C							
Suspended Solids (SS)		1	mg/L	<1	2	2	3	1
EA045: Turbidity								
Turbidity		0.1	NTU	1.3	1.4	2.0	2.2	1.8
ED093F: SAR and Hardness Calculations								
Total Hardness as CaCO3		1	mg/L	31	31	41	312	43
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.04	0.01	0.03
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.006	<0.005	<0.005
Manganese	7439-96-5	0.001	mg/L	0.002	0.002	0.001	0.036	0.002
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	<0.05	0.10	<0.05
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.07	0.08	0.08	0.04	0.07
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	0.005	<0.001	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	WC-RS	WC-IS	YR1-RS	LHG-IS	YR2-RS
		Sampli	ing date / time	16-Oct-2024 09:00	16-Oct-2024 09:40	16-Oct-2024 10:15	16-Oct-2024 10:45	16-Oct-2024 11:05
Compound	CAS Number	LOR	Unit	ES2434038-001	ES2434038-002	ES2434038-003	ES2434038-004	ES2434038-005
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-MS - Co	ontinued							
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Manganese	7439-96-5	0.001	mg/L	0.004	0.004	0.001	0.034	0.002
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	7439-89-6	0.05	mg/L	0.10	0.12	0.09	0.26	0.08
EG035F: Dissolved Mercury by FIMS	s							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG035T: Total Recoverable Mercury	y by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK026SF: Total CN by Segmented F	Flow Analyser							
Total Cyanide	57-12-5	0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
EK055G: Ammonia as N by Discrete	Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.01	0.02	0.02	<0.01
EK057G: Nitrite as N by Discrete Ar	nalyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete A	nalyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.02	0.02	<0.01	0.01	0.01
EK059G: Nitrite plus Nitrate as N (N	Ox) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.02	0.02	<0.01	0.01	0.01
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.1	0.2	0.1	0.1	0.2
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L	0.1	0.2	0.1	0.1	0.2
EK067G: Total Phosphorus as P by	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.02	0.03	0.02	0.02	0.05
EK071G: Reactive Phosphorus as P	by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	TR-RS	YK-IS(d/s)	NZG-IS	YK-IS	YK-RS
		Sampli	ng date / time	16-Oct-2024 11:55	16-Oct-2024 15:05	16-Oct-2024 15:45	16-Oct-2024 16:15	16-Oct-2024 16:45
Compound	CAS Number	LOR	Unit	ES2434038-006	ES2434038-007	ES2434038-008	ES2434038-009	ES2434038-010
				Result	Result	Result	Result	Result
EA015: Total Dissolved Solids dried at 180	±5°C							
Total Dissolved Solids @180°C		10	mg/L	38	24	26	40	21
EA025: Total Suspended Solids dried at 10	4 ± 2°C							
Suspended Solids (SS)		1	mg/L	4	4	3	4	22
EA045: Turbidity								
Turbidity		0.1	NTU	1.7	6.4	5.3	3.1	17.9
ED093F: SAR and Hardness Calculations								
Total Hardness as CaCO3		1	mg/L	14	5	12	21	5
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.04	0.10	0.08	0.07	0.14
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	0.013	0.009	<0.005	<0.005	<0.005
Manganese	7439-96-5	0.001	mg/L	0.008	0.010	0.008	0.004	0.013
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	7439-89-6	0.05	mg/L	<0.05	0.12	0.11	0.06	0.15
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.07	0.22	0.17	0.14	0.24
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.002	<0.001	<0.001
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	TR-RS	YK-IS(d/s)	NZG-IS	YK-IS	YK-RS
		Sampli	ing date / time	16-Oct-2024 11:55	16-Oct-2024 15:05	16-Oct-2024 15:45	16-Oct-2024 16:15	16-Oct-2024 16:45
Compound	CAS Number	LOR	Unit	ES2434038-006	ES2434038-007	ES2434038-008	ES2434038-009	ES2434038-010
				Result	Result	Result	Result	Result
EG020T: Total Metals by ICP-MS - C	ontinued							
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Manganese	7439-96-5	0.001	mg/L	0.010	0.010	0.010	0.006	0.020
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	7439-89-6	0.05	mg/L	0.11	0.28	0.27	0.23	0.45
EG035F: Dissolved Mercury by FIM	s							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EG035T: Total Recoverable Mercur	ry by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
EK026SF: Total CN by Segmented	Flow Analyser							
Total Cyanide	57-12-5	0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
EK055G: Ammonia as N by Discrete	e Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.04	0.03	0.02	0.01	0.01
EK057G: Nitrite as N by Discrete A	nalyser							
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discrete A	Analyser							
Nitrate as N	14797-55-8	0.01	mg/L	0.02	0.11	0.07	<0.01	0.05
EK059G: Nitrite plus Nitrate as N (N	NOx) by Discrete Ana	lyser						
Nitrite + Nitrate as N		0.01	mg/L	0.02	0.11	0.07	<0.01	0.05
EK061G: Total Kjeldahl Nitrogen By	/ Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.2	0.2	0.2	0.2
EK062G: Total Nitrogen as N (TKN ·	+ NOx) by Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L	0.2	0.3	0.3	0.2	0.2
EK067G: Total Phosphorus as P by	Discrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.02	0.04	0.03	0.06	0.03
EK071G: Reactive Phosphorus as F	P by discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01

Sub-Matrix: WATER (Matrix: WATER)		Sample ID	CG-IS	SSC-IS	 	
	Sampl	ing date / time	16-Oct-2024 10:30	16-Oct-2024 07:40	 	
Compound CAS Number	LOR	Unit	ES2434038-011	ES2434038-012	 	
			Result	Result	 	
EA015: Total Dissolved Solids dried at 180 ± 5 °C						
Total Dissolved Solids @180°C	. 10	mg/L	298	100	 	
EA025: Total Suspended Solids dried at 104 ± 2°C						
Suspended Solids (SS)	. 1	mg/L	<1	1	 	
EA045: Turbidity						
Turbidity	. 0.1	NTU	1.0	8.9	 	
ED093F: SAR and Hardness Calculations						
Total Hardness as CaCO3	. 1	mg/L	294	58	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium 7429-90-5	0.01	mg/L	<0.01	0.08	 	
Arsenic 7440-38-2	0.001	mg/L	<0.001	<0.001	 	
Cadmium 7440-43-5	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium 7440-47-5	0.001	mg/L	<0.001	<0.001	 	
Copper 7440-50-6	0.001	mg/L	<0.001	<0.001	 	
Nickel 7440-02-0	0.001	mg/L	<0.001	<0.001	 	
Lead 7439-92-	0.001	mg/L	<0.001	<0.001	 	
Zinc 7440-66-6	0.005	mg/L	<0.005	<0.005	 	
Manganese 7439-96-5	0.001	mg/L	<0.001	0.001	 	
Silver 7440-22-4	0.001	mg/L	<0.001	<0.001	 	
Iron 7439-89-6	0.05	mg/L	<0.05	<0.05	 	
EG020T: Total Metals by ICP-MS						
Aluminium 7429-90-5	0.01	mg/L	<0.01	0.13	 	
Arsenic 7440-38-2	0.001	mg/L	<0.001	<0.001	 	
Cadmium 7440-43-5	0.0001	mg/L	<0.0001	<0.0001	 	
Chromium 7440-47-3	0.001	mg/L	<0.001	<0.001	 	
Copper 7440-50-8	0.001	mg/L	<0.001	<0.001	 	
Nickel 7440-02-0	0.001	mg/L	<0.001	<0.001	 	
Lead 7439-92-1	0.001	mg/L	<0.001	<0.001	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	CG-IS	SSC-IS	 	
		Sampli	ing date / time	16-Oct-2024 10:30	16-Oct-2024 07:40	 	
Compound	CAS Number	LOR	Unit	ES2434038-011	ES2434038-012	 	
				Result	Result	 	
EG020T: Total Metals by ICP-MS - Co	ntinued					 	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	 	
Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	 	
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	 	
Iron	7439-89-6	0.05	mg/L	<0.05	0.10	 	
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
EG035T: Total Recoverable Mercury	by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	 	
EK026SF: Total CN by Segmented F	low Analyser						
Total Cyanide	57-12-5	0.002	mg/L	<0.002	<0.002	 	
EK055G: Ammonia as N by Discrete	Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.01	 	
EK057G: Nitrite as N by Discrete Ana	alyser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete An	alyser						
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.18	 	
EK059G: Nitrite plus Nitrate as N (NO	Dx) by Discrete Ana	lyser					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.18	 	
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser						
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.1	0.2	 	
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	nalyser					
^ Total Nitrogen as N		0.1	mg/L	0.1	0.4	 	
EK067G: Total Phosphorus as P by D	Discrete Analyser						
Total Phosphorus as P		0.01	mg/L	0.02	0.02	 	
EK071G: Reactive Phosphorus as P	by discrete analyser	•					
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	 	

	QA/QC Compliance Assessn	nent to assist with	h Quality Review
Work Order	: ES2434038	Page	: 1 of 10
Client		Laboratory	: Environmental Division Sydney
Contact	: CAMILLE PALMER	Telephone	: +61-2-8784 8555
Project	: 3200-0645 TransGrid Maragle 500/330kV Station. (Event 8C)	Date Samples Received	: 18-Oct-2024
Site	: Maragle/Lobs Hole	Issue Date	: 25-Oct-2024
Sampler	: Lachlan Whiteford	No. of samples received	: 12
Order number	: 4501837828	No. of samples analysed	: 12

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, where applicable to the methodology, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Matrix: WATER

Method		Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA045: Turbidity							
Clear Plastic Bottle - Natural							
WC-RS,	WC-IS,				19-Oct-2024	18-Oct-2024	1
YR1-RS,	LHG-IS,						
YR2-RS,	TR-RS,						
YK-IS(d/s),	NZG-IS,						
YK-IS,	YK-RS,						
CG-IS,	SSC-IS						
EK057G: Nitrite as N by Discrete Analy	yser						
Clear Plastic Bottle - Natural							
WC-RS,	WC-IS,				19-Oct-2024	18-Oct-2024	1
YR1-RS,	LHG-IS,						
YR2-RS,	TR-RS,						
YK-IS(d/s),	NZG-IS,						
YK-IS,	YK-RS,						
CG-IS,	SSC-IS						
EK071G: Reactive Phosphorus as P by	/ discrete analyser						
Clear Plastic Bottle - Natural							
WC-RS,	WC-IS,				19-Oct-2024	18-Oct-2024	1
YR1-RS,	LHG-IS,						
YR2-RS,	TR-RS,						
YK-IS(d/s),	NZG-IS,						
YK-IS,	YK-RS,						
CG-IS,	SSC-IS						

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: **x** = Holding time breach ; **√** = Within holding time.

Method		Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method			e Extraction / Preparation Analysis					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids drie	ed at 180 ± 5 °C							
Clear Plastic Bottle - Natural (EA0	15H)							
WC-RS,	WC-IS,	16-Oct-2024				22-Oct-2024	23-Oct-2024	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS,	SSC-IS							
EA025: Total Suspended Solids dr	ried at 104 ± 2°C							
Clear Plastic Bottle - Natural (EA02	25)							
WC-RS,	WC-IS,	16-Oct-2024				22-Oct-2024	23-Oct-2024	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS.	YK-RS.							
CG-IS,	SSC-IS							
EA045: Turbidity								
Clear Plastic Bottle - Natural (EA04	45)							
WC-RS,	WC-IS,	16-Oct-2024				19-Oct-2024	18-Oct-2024	*
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS.	YK-RS.							
CG-IS,	SSC-IS							
ED093F: SAR and Hardness Calcu	lations							
Clear Plastic Bottle - Nitric Acid; F	iltered (ED093F)							
WC-RS,	WC-IS,	16-Oct-2024				22-Oct-2024	13-Nov-2024	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS.	YK-RS.							
CG-IS,	SSC-IS							
EG020F: Dissolved Metals by ICP-	MS							
Clear Plastic Bottle - Nitric Acid; F	iltered (EG020B-F)							
WC-RS,	WC-IS,	16-Oct-2024				22-Oct-2024	14-Apr-2025	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS.							
YK-IS(d/s).	NZG-IS.							
YK-IS.	YK-RS.							
CG-IS	SSC-IS							

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; I	Unfiltered (EG020B-T)							
WC-RS,	WC-IS,	16-Oct-2024	22-Oct-2024	14-Apr-2025	1	22-Oct-2024	14-Apr-2025	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS,	SSC-IS							
EG035F: Dissolved Mercury by Fl	MS							
Clear Plastic Bottle - Nitric Acid; F	Filtered (EG035F)							
WC-RS,	WC-IS,	16-Oct-2024				24-Oct-2024	13-Nov-2024	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS,	SSC-IS							
EG035T: Total Recoverable Merc	ury by FIMS							
Clear Plastic Bottle - Nitric Acid; I	Unfiltered (EG035T)							
WC-RS,	WC-IS,	16-Oct-2024				24-Oct-2024	13-Nov-2024	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS,	SSC-IS							
EK026SF: Total CN by Segmente	d Flow Analyser							
Black Opaque Plastic Bottle - NaC	OH (EK026SF)							
WC-RS,	WC-IS,	16-Oct-2024				25-Oct-2024	30-Oct-2024	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS,	SSC-IS		-					
EK055G: Ammonia as N by Discre	ete Analyser			1			1	
Clear Plastic Bottle - Sulfuric Acid	d (EK055G)	40.0-4.0004				04.0++ 0004	10 Nov 0004	
WC-RS,	WC-IS,	16-Oct-2024				24-001-2024	13-1100-2024	✓
YR1-RS,	LHG-IS,							
YRZ-RS,	IR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS.	SSC-IS							

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete	Analyser							
Clear Plastic Bottle - Natural (EK0	57G)							
WC-RS,	WC-IS,	16-Oct-2024				19-Oct-2024	18-Oct-2024	x
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS,	SSC-IS							
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid	(EK059G)							
WC-RS,	WC-IS,	16-Oct-2024				24-Oct-2024	13-Nov-2024	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS,	SSC-IS							
EK061G: Total Kjeldahl Nitrogen E	By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid	(EK061G)							
WC-RS,	WC-IS,	16-Oct-2024	23-Oct-2024	13-Nov-2024	-	23-Oct-2024	13-Nov-2024	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS,	SSC-IS							
EK067G: Total Phosphorus as P b	y Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid	(EK067G)			40.01 0004			40.01 0004	
WC-RS,	WC-IS,	16-Oct-2024	23-Oct-2024	13-Nov-2024	-	23-Oct-2024	13-Nov-2024	✓
YR1-RS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS,	SSC-IS							
EK071G: Reactive Phosphorus as	P by discrete analyser			1		1	1	
Clear Plastic Bottle - Natural (EK0	71G)					40.0.1.0004	40.0.1.0004	
WC-RS,	WC-IS,	16-OCt-2024				19-Oct-2024	18-0Ct-2024	×
YK1-KS,	LHG-IS,							
YR2-RS,	TR-RS,							
YK-IS(d/s),	NZG-IS,							
YK-IS,	YK-RS,							
CG-IS.	SSC-IS							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification.	
Quality Control Sample Type		С	ount	Rate (%)			Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Ammonia as N by Discrete analyser	EK055G	4	32	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite B	EG020B-F	3	26	11.54	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	4	34	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids	EA025	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Dissolved Solids (High Level)	EA015H	2	12	16.67	10.00	\checkmark	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite B	EG020B-T	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Turbidity	EA045	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Ammonia as N by Discrete analyser	EK055G	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	26	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids	EA025	3	12	25.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Cyanide by Segmented Flow Analyser	EK026SF	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Dissolved Solids (High Level)	EA015H	3	12	25.00	12.50	\checkmark	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	6	40	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite B	EG020B-T	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	6	40	15.00	15.00	✓	NEPM 2013 B3 & ALS QC Standard	
Turbidity	EA045	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	2	32	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	2	40	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Page	: 7 of 10
Work Order	: ES2434038
Client	: UGL LIMITED
Project	: 3200-0645 TransGrid Maragle 500/330kV Station. (Event 8C)

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; 🗸 = Quality Control frequency within specification
Quality Control Sample Type		Сс	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite B	EG020B-F	2	26	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Suspended Solids	EA025	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite B	EG020B-T	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Turbidity	EA045	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	2	32	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Suspended Solids	EA025	WATER	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)
Turbidity	EA045	WATER	In house: Referenced to APHA 2130 B. This method is compliant with NEPM Schedule B(3)
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite B	EG020B-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).

Analytical Methods	Method	Matrix	Method Descriptions
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Total Cyanide by Segmented Flow Analyser	EK026SF	WATER	In house: Referenced to APHA 4500-CN C&O / ASTM D7511 / ISO 14403. Sodium hydroxide preserved samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)

Page	: 10 of 10
Work Order	: ES2434038
Client	: UGL LIMITED
Project	: 3200-0645 TransGrid Maragle 500/330kV Station. (Event 8C)

Preparation Methods	Method	Matrix	Method Descriptions
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

QUALITY CONTROL REPORT

Work Order	: ES2434038	Page	: 1 of 10
Client	: UGL LIMITED	Laboratory	: Environmental Division Sydney
Contact	: CAMILLE PALMER	Contact	: Customer Services ES
Address	: Cnr Hill Rd & Pondage Link Rd HOMEBUSH BAY 2127	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: 3200-0645 TransGrid Maragle 500/330kV Station. (Event 8C)	Date Samples Received	: 18-Oct-2024
Order number	: 4501837828	Date Analysis Commenced	: 19-Oct-2024
C-O-C number	:	Issue Date	25-Oct-2024
Sampler	: Lachlan Whiteford		Hac-MRA NATA
Site	: Maragle/Lobs Hole		
Quote number	: ES24UGLLIM0001_V3		Accreditation No. 825
No. of samples received	: 12		Accredited for compliance with
No. of samples analysed	: 12		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dian Dao	Senior Chemist - Inorganics	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER	Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
EA015: Total Dissolv	ed Solids dried at 180 ± 5 °C	; (QC Lot: 6136679)										
ES2434038-011	CG-IS	EA015H: Total Dissolved Solids @180°C		10	mg/L	298	318	6.7	0% - 20%			
ES2434038-001	WC-RS	EA015H: Total Dissolved Solids @180°C		10	mg/L	46	40	13.9	No Limit			
EA025: Total Suspen	ded Solids dried at 104 ± 2°	C (QC Lot: 6136680)										
ES2434038-011	CG-IS	EA025: Suspended Solids (SS)		1	mg/L	<1	<1	0.0	No Limit			
ES2434038-001	WC-RS	EA025: Suspended Solids (SS)		1	mg/L	<1	<1	0.0	No Limit			
EA045: Turbidity (Q0	C Lot: 6131075)											
EN2413140-005	Anonymous	EA045: Turbidity		0.1	NTU	130	126	3.1	0% - 20%			
EN2413155-014	Anonymous	EA045: Turbidity		0.1	NTU	243	249	2.4	0% - 20%			
EA045: Turbidity (QC Lot: 6131076)												
ES2434038-010	YK-RS	EA045: Turbidity		0.1	NTU	17.9	19.7	9.6	0% - 20%			
ES2434150-004	Anonymous	EA045: Turbidity		0.1	NTU	0.5	0.5	0.0	No Limit			
EG020F: Dissolved N	letals by ICP-MS (QC Lot: 6	136306)										
ES2433905-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit			
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.0	No Limit			
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.749	0.736	1.7	0% - 20%			
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.006	0.006	0.0	No Limit			
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.014	0.014	0.0	No Limit			

Sub-Matrix: WATER	ub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
EG020F: Dissolved	Metals by ICP-MS (C	QC Lot: 6136306) - continued										
ES2433905-001	Anonymous	EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit			
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.16	0.15	0.0	No Limit			
ES2433905-011	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit			
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	1.04	1.03	1.1	0% - 20%			
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.004	0.004	0.0	No Limit			
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit			
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit			
		EG020A-F: Iron	7439-89-6	0.05	mg/L	1.84	1.82	0.9	0% - 20%			
EG020F: Dissolved	Metals by ICP-MS (C	QC Lot: 6136307)										
ES2433905-001	Anonymous	EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
ES2433905-011	Anonymous	EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
EG020F: Dissolved	Metals by ICP-MS (C	QC Lot: 6136311)										
ES2434131-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit			
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.004	0.006	42.7	No Limit			
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.077	0.079	2.8	0% - 20%			
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.002	0.0	No Limit			
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.022	0.021	5.6	No Limit			
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.04	0.04	0.0	No Limit			
		EG020A-F: Iron	7439-89-6	0.05	mg/L	1.34	1.36	1.8	0% - 20%			
ES2434038-007	YK-IS(d/s)	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit			
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.010	0.010	0.0	0% - 50%			
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.009	<0.005	54.5	No Limit			
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.10	0.09	12.3	0% - 50%			
		EG020A-F: Iron	7439-89-6	0.05	mg/L	0.12	0.12	0.0	No Limit			
EG020F: Dissolved	Metals by ICP-MS (C	QC Lot: 6136312)										

Page	: 4 of 10
Work Order	: ES2434038
Client	: UGL LIMITED
Project	: 3200-0645 TransGrid Maragle 500/330kV Station. (Event 8C)

Sub-Matrix: WATER	Matrix: WATER			Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020F: Dissolved M	etals by ICP-MS (QC Lot: 6	136312) - continued							
ES2434038-007	YK-IS(d/s)	EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 613629	95)							1
ES2434038-003	YR1-RS	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.08	0.08	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.09	0.08	0.0	No Limit
ES2434038-011	CG-IS	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EG020T: Total Metals	by ICP-MS (QC Lot: 613629	96)							
ES2434038-003	YR1-RS	EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
ES2434038-011	CG-IS	EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
EG035F: Dissolved M	ercury by FIMS (QC Lot: 61	36309)							
ES2433905-004	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2433905-010	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG035F: Dissolved M	ercury by FIMS (QC Lot: 61	36310)							'
ES2434038-010	YK-RS	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2434131-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EG035T: Total Recov	verable Mercurv by FIMS (Q	C Lot: 6138048)				I			I
ES2433634-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	ma/L	<0.0001	<0.0001	0.0	No Limit
ES2434038-004	LHG-IS	EG035T: Mercury	7439-97-6	0.0001	ma/L	< 0.0001	< 0.0001	0.0	No Limit
EK026SE: Total CN b	v Segmented Flow Analyse	r (OC L ot: 6140912)			3. –				
ES2434038-001	WC-RS		57_12 5	0.004 (0.002)	ma/l	<0.005	<0.002	0.0	No Limit
L02+0+000-001	WO-110		57-12-5	0.004 (0.002) *	my/L	~0.002	~0.00Z	0.0	

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK026SF: Total CN	by Segmented Flow A	nalyser (QC Lot: 6140912) - continued							
ES2434038-011	CG-IS	EK026SF: Total Cyanide	57-12-5	0.004 (0.002)	mg/L	<0.002	<0.002	0.0	No Limit
EK055G: Ammonia a	K055G: Ammonia as N by Discrete Analyser (QC Lot: 6137877)								
EN2413182-004	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.26	0.25	0.0	0% - 20%
EN2413182-013	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.06	99.6	No Limit
EK055G: Ammonia a	as N by Discrete Analy	ser (QC Lot: 6137880)							
ES2434038-008	NZG-IS	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	<0.01	72.8	No Limit
ES2434091-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.65	0.65	0.0	0% - 20%
EK057G: Nitrite as I	N by Discrete Analyse	(QC Lot: 6131165)							
ES2434038-001	WC-RS	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2434038-010	YK-RS	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 6137878)									
EN2413182-004	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EN2413182-013	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.01	0.0	No Limit
EK059G: Nitrite plus	EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC Lot: 6137879)								
ES2434038-008	NZG-IS	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.07	0.04	47.2	No Limit
ES2434091-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.90	0.91	1.2	0% - 20%
EK061G: Total Kjeld	ahl Nitrogen By Discre	ete Analyser (QC Lot: 6137874)							
EN2413182-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1 (2.0)*	mg/L	6.2	6.0	3.6	No Limit
EN2413182-014	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	0.9	0.0	No Limit
EK061G: Total Kjeld	ahl Nitrogen By Discre	ete Analyser (QC Lot: 6137875)							
ES2434038-005	YR2-RS	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.2	0.0	No Limit
ES2434090-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1 (1.0)*	mg/L	24.0	23.9	0.4	0% - 20%
EK067G: Total Phos	phorus as P by Discre	te Analyser (QC Lot: 6137873)							
EN2413182-004	Anonymous	EK067G: Total Phosphorus as P		0.01 (0.20)*	mg/L	1.07	1.04	3.4	No Limit
EN2413182-014	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.08	0.09	0.0	No Limit
EK067G: Total Phos	phorus as P by Discre	te Analyser (QC Lot: 6137876)							
ES2434038-005	YR2-RS	EK067G: Total Phosphorus as P		0.01	mg/L	0.05	0.06	31.7	No Limit
ES2434090-001	Anonymous	EK067G: Total Phosphorus as P		0.01 (0.10)*	mg/L	3.04	3.14	3.5	0% - 20%
EK071G: Reactive P	hosphorus as P by dis	crete analyser (QC Lot: 6131164)							
ES2434038-001	WC-RS	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES2434038-010	YK-RS	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER		Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 6136679)									
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	98.5	87.0	109	
				<10	293 mg/L	110	75.2	126	
				<10	2410 mg/L	96.7	83.0	124	
EA025: Total Suspended Solids dried at 104 \pm 2°C (QCL	ot: 6136680)								
EA025: Suspended Solids (SS)		1	mg/L	<1	150 mg/L	93.3	83.0	129	
				<1	1000 mg/L	86.1	81.0	111	
				<1	879 mg/L	101	83.0	118	
EA045: Turbidity (QCLot: 6131075)									
EA045: Turbidity		0.1	NTU	<0.1	40 NTU	99.0	91.0	105	
EA045: Turbidity (QCLot: 6131076)									
EA045: Turbidity		0.1	NTU	<0.1	40 NTU	99.2	91.0	105	
EG020F: Dissolved Metals by ICP-MS (QCLot: 6136306)							• •	- -	
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	98.7	80.0	116	
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	91.5	85.0	114	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	93.2	84.0	110	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	97.1	85.0	111	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	94.6	81.0	111	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	94.7	83.0	111	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	98.5	82.0	110	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	93.6	82.0	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	94.6	81.0	117	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	99.2	82.0	112	
EG020F: Dissolved Metals by ICP-MS (QCLot: 6136307)									
EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	0.02 mg/L	85.0	70.0	130	
EG020F: Dissolved Metals by ICP-MS (QCLot: 6136311)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	98.2	80.0	116	
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	91.8	85.0	114	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.0	84.0	110	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.7	85.0	111	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.5	81.0	111	

ub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 613631	1) - continued								
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.8	83.0	111	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	101	82.0	110	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	89.9	82.0	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	95.3	81.0	117	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	100	82.0	112	
EG020F: Dissolved Metals by ICP-MS (QCLot: 6136312)									
EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	0.02 mg/L	94.4	70.0	130	
EG020T: Total Metals by ICP-MS (QCLot: 6136295)									
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	98.8	82.0	120	
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	94.5	82.0	114	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	94.6	84.0	112	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	97.0	86.0	116	
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.9	83.0	118	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	92.4	85.0	115	
EG020A-T: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	91.4	85.0	113	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	89.6	84.0	116	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	91.6	79.0	117	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	96.5	85.0	117	
EG020T: Total Metals by ICP-MS (QCLot: 6136296)									
EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	0.02 mg/L	94.8	70.0	130	
EG035F: Dissolved Mercury by FIMS (QCLot: 6136309	9)						• •		
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	98.1	83.0	105	
EG035F: Dissolved Mercury by FIMS (QCLot: 6136310))								
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	97.1	83.0	105	
EG035T: Total Recoverable Mercury by FIMS (QCLot	: 6138048)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	102	77.0	111	
EK026SF: Total CN by Segmented Flow Analyser (QC	CLot: 6140912)								
EK026SF: Total Cyanide	57-12-5	0.004	mg/L	<0.004	0.2 mg/L	94.1	73.0	133	
EK055G: Ammonia as N by Discrete Analyser (QCLot	: 6137877)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	94.8	90.0	114	
EK055G: Ammonia as N by Discrete Analyser (QCLot	: 6137880)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	96.4	90.0	114	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 67	131165)								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	94.5	82.0	114	

Sub-Matrix: WATER	-Matrix: WATER					Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable) Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser (QCLot: 6 [/]	137878)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	100	91.0	113		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser (QCLot: 6 [/]	137879)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	97.1	91.0	113		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	(QCLot: 6137874)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	86.6	69.0	123		
				<0.1	1 mg/L	99.7	70.0	123		
				<0.1	5 mg/L	93.3	70.0	123		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	(QCLot: 6137875)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	88.1	69.0	123		
				<0.1	1 mg/L	110	70.0	123		
				<0.1	5 mg/L	98.2	70.0	123		
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 6137873)				-		L.			
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	96.0	71.3	126		
				<0.01	0.442 mg/L	104	71.3	126		
				<0.01	1 mg/L	99.4	70.0	130		
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 6137876)									
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	94.3	71.3	126		
				<0.01	0.442 mg/L	100	71.3	126		
				<0.01	1 mg/L	105	70.0	130		
EK071G: Reactive Phosphorus as P by discrete analyse	er (QCLot: 613116	64)			·					
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	101	85.0	117		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	Matrix: WATER					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG020F: Dissolved Metals by ICP-MS (QCLot: 6136306)										
ES2433905-002	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	98.3	70.0	130			
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	95.4	70.0	130			
		EG020A-F: Chromium	7440-47-3	1 mg/L	98.7	70.0	130			
		EG020A-F: Copper	7440-50-8	1 mg/L	96.4	70.0	130			
		EG020A-F: Lead	7439-92-1	1 mg/L	75.6	70.0	130			
		EG020A-F: Manganese	7439-96-5	1 mg/L	98.5	70.0	130			

Sub-Matrix: WATER	Matrix: WATER					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG020F: Dissolved	EG020F: Dissolved Metals by ICP-MS (QCLot: 6136306) - continued									
ES2433905-002	Anonymous	EG020A-F: Nickel	7440-02-0	1 mg/L	94.8	70.0	130			
	-	EG020A-F: Zinc	7440-66-6	1 mg/L	97.7	70.0	130			
EG020F: Dissolved	Metals by ICP-MS (QCLot: 6136311)									
ES2434038-008	NZG-IS	EG020A-E: Arsenic	7440-38-2	1 mg/L	87.8	70.0	130			
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	95.4	70.0	130			
		EG020A-F: Chromium	7440-47-3	1 mg/L	101	70.0	130			
		EG020A-F: Copper	7440-50-8	1 mg/L	94.0	70.0	130			
		EG020A-F: Lead	7439-92-1	1 mg/L	95.0	70.0	130			
		EG020A-F: Manganese	7439-96-5	1 mg/L	102	70.0	130			
		EG020A-F: Nickel	7440-02-0	1 mg/L	92.5	70.0	130			
		EG020A-F: Zinc	7440-66-6	1 mg/L	94.6	70.0	130			
EG020T: Total Meta	als by ICP-MS (QCLot: 6136295)									
EB2435660-002	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	94.6	70.0	130			
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	93.1	70.0	130			
		EG020A-T: Chromium	7440-47-3	1 mg/L	95.5	70.0	130			
		EG020A-T: Copper	7440-50-8	1 mg/L	93.3	70.0	130			
		EG020A-T: Lead	7439-92-1	1 mg/L	99.0	70.0	130			
		EG020A-T: Manganese	7439-96-5	1 mg/L	95.1	70.0	130			
		EG020A-T: Nickel	7440-02-0	1 mg/L	95.8	70.0	130			
		EG020A-T: Zinc	7440-66-6	1 mg/L	95.3	70.0	130			
EG035F: Dissolved	Mercury by FIMS (QCLot: 6136309)									
ES2433905-003	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	85.0	70.0	130			
EG035F: Dissolved	Mercury by FIMS (QCLot: 6136310)									
ES2434038-009	YK-IS	EG035F: Mercury	7439-97-6	0.01 mg/L	94.0	70.0	130			
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 6138048)									
EM2417944-001	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	96.9	70.0	130			
EK026SF: Total CN	by Segmented Flow Analyser (QCLot: 6140912)									
ES2434038-001	WC-RS	EK026SF: Total Cyanide	57-12-5	0.2 mg/L	87.0	70.0	130			
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 6137877)									
EN2413182-004	Anonymous	EK055G: Ammonia as N	7664-41-7	0.5 mg/L	78.1	70.0	130			
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 6137880)			·						
ES2434038-008	NZG-IS	EK055G: Ammonia as N	7664-41-7	0.5 mg/L	94.5	70.0	130			
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 6131165)			· ·	·					
ES2434038-001	WC-RS	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	108	70.0	130			
EK059G: Nitrite plu	us Nitrate as N (NOx) by Discrete Analyser (QCLot:	6137878)			· · · · ·		·			
EN2413182-004	Anonymous									

Page	: 10 of 10
Work Order	ES2434038
Client	: UGL LIMITED
Project	: 3200-0645 TransGrid Maragle 500/330kV Station. (Event 8C)

Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Acceptable Limits (%) Laboratory sample ID Sample ID CAS Number MS Concentration Low High Method: Compound EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 6137878) - continued 0.5 mg/L EN2413182-004 Anonymous EK059G: Nitrite + Nitrate as N 101 70.0 130 -----EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLot: 6137879) ES2434038-008 NZG-IS 0.5 mg/L 99.3 70.0 130 EK059G: Nitrite + Nitrate as N -----EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 6137874) EN2413182-005 Anonymous EK061G: Total Kjeldahl Nitrogen as N 5 mg/L 97.7 70.0 130 ----EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 6137875) ES2434038-006 TR-RS EK061G: Total Kjeldahl Nitrogen as N 5 mg/L 94.4 70.0 130 ----EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 6137873) EN2413182-005 Anonymous 1 mg/L 111 70.0 130 EK067G: Total Phosphorus as P ----EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 6137876) TR-RS ES2434038-006 104 70.0 EK067G: Total Phosphorus as P ----1 mg/L 130 EK071G: Reactive Phosphorus as P by discrete analyser (QCLot: 6131164) ES2434038-001 WC-RS 14265-44-2 0.5 mg/L 114 70.0 130 EK071G: Reactive Phosphorus as P

Appendix C: October 2024 SWQ Monitoring Results

		Sheen/oil/	omn (90) (Dissolved	DO (nom)	Specific EC	EC (uS(om)		Dodox (m)/)	Turbidity	Dissolved Al	Dissolved As	Dissolved Cd	Dissolved Cr	Dissolved Cu	Cyanide	Dissolved Fe	Dissolved Pb	Dissolved Mn	Dissolved Hg	Dissolved Ni	TN (md/l)	TD (md/l)
Parameter		grease	emp. (-c) c	%)	DO (ppin)	uS/cm)	EC (us/cm)	рп	Redux (IIIV)	(NTU)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	TN (Ing/L)	TP (IIIg/L)
YARRANGOBIL	LYCATCHMENT	Ne		00.110		20.250	20.250	0.5.0	,	2.25	0.027	0.0008	0.0006	0.00001	0.001	0.004	0.2	0.001	12	0.00000	0.008	0.25	0.02
Default Guideli	ne Value (DGV)	INU	-	90-110	-	30-350	30-330	0.0-0	- 0	2-25	0.027	0.000	0.0001	0.00001	0.001	0.004	0.5	0.001	0.001	0.0000	0.000	0.25	0.02
Limit of Report	ng (LUK) Sassifis Quidalina I	(alua (660)))		90.110	9.08	115	93.2	65.8		0.37	0.01	0.001	0.0001	0.001	0.001	0.002	0.03	0.001	0.001	0.0001	0.001	0.1	0.01
Lune - Nov SSCV	pecific Guideune (alue (SSGV)		00 110	10.28	115	60.85	65.9	2 08/	5 12	0.03	0.0003	0.00002	0.00001	0.0002	0.002	0.03	0.001	0.002	0.00003	0.001	0.2	0.02
WC-RS	Mar-24	No	10.7	87.5	9.72	143.6	104.3	7.8	3 25.9	0.1	0.04	0.0003	0.00002	0.00001	0.0002	0.002	0.02	0.001	0.002	0.00003	0.001	0.2	0.02
	Apr-24	No	10.7	94.8	-	145.6	-	8.44	4 -	1.05	0.01	0.001	0.0001	0.001	0.001	0.002	0.11	0.001	0.007	0.0001	0.001	0.1	0.02
	May-24	No	2.1	93.8	-	155	-	8.05	5 -	0.39	0.01	0.001	0.0001	0.001	0.001	0.004	0.05	0.001	0.009	0.0001	0.001	0.1	0.02
	Jun-24	No	4.7	92.9	-	126.8	-	7.51	L -	0.56	0.01	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.005	0.0001	0.001	0.2	0.01
	Jul-24	No	6.4	91.9	-	46.6	-	6.96	6 -	9.24	0.07	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.1	0.05
	Aug-24 Sep-24	No	10.4	92.0	-	47.1		7.86	 -	0.5	0.02	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.1	0.01
	Oct-24	No	9.3	92.7	-	52	-	7.55	- 5 -	1.3	0.02	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.1	0.02
WC-IS	Mar-24	No	10.7	87.1	9.68	145.9	105.9	7.83	3 41.9	0.1	0.03	0.00015	0.00001	0.00001	0.002	0.001	0.03	0.002	0.003	0.00002	0.0005	0.1	0.005
	Apr-24	No	10.7	95.0	-	145.2	-	8.45	-	0.9	0.01	0.001	0.0001	0.001	0.001	0.002	0.07	0.001	0.006	0.0001	0.001	2.7	0.02
	May-24	No	2.1	94.1	-	154.9	-	7.86	δ -	0.3	0.01	0.001	0.0001	0.001	0.001	0.004	0.05	0.001	0.007	0.0001	0.001	0.4	0.02
	Jun-24	No	4.8	93.3	-	46.6	-	6.96	-	0.35	0.01	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.004	0.0001	0.001	0.1	0.01
	Aug-24	No	10.5	91.5	-	45.6	-	7.83	3 -	5.85	0.02	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.001	0.0001	0.001	0.1	0.01
	Sep-24	No	11.7	92.9	-	54.4	-	7.83	- 3	5.5	0.04	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.005	0.0001	0.001	7.6	0.02
	Oct-24	No	9.5	93.3	-	52.1	-	7.66	- S	1.4	0.02	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.2	0.03
CG-IS	Mar-24	No Flow	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Apr-24 May-24	No Flow	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Jun-24	No Flow	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Jul-24	No Flow	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Aug-24	No Flow	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Sep-24	No Flow	-	-	-	-	-	0.17		-	-	-	-	-	-	-	-	-	-	-	-	-	-
YB1-IS	Mar-24	No	12.7	95.2	9.47	129.4	97.7	7.81	- 53.8	0.1	0.01	0.00015	0.00001	0.000005	0.001	0.002	0.03	0.0001	0.001	0.000015	0.001	0.1	0.02
	Apr-24	No	11.3	97.4	-	136.1	-	8.49	-	1.23	0.01	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.1	0.01
	May-24	No	3.1	95.6	-	138.8	-	7.91	L -	0.42	0.01	0.001	0.0001	0.001	0.001	0.004	0.05	0.001	0.002	0.0001	0.001	0.1	0.02
	Jun-24	No	5.6	94.3	-	112.4	-	7.8	- 3	1.94	0.02	0.001	0.0001	0.001	0.001	0.002	0.14	0.001	0.003	0.0001	0.001	0.1	0.01
	Jul-24	No	6.4	93.0	-	51.5	-	6.93	 7	10.05	0.18	0.001	0.0001	0.001	0.001	0.002	0.11	0.001	0.002	0.0001	0.001	0.2	0.02
	Sep-24	No	13.3	93.1	-	61.4	-	7.77	7 -	0.79	0.07	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.001	0.0001	0.001	0.2	0.01
	Oct-24	No	12.5	94.9	-	66.8	-	7.77		2	0.04	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.001	0.0001	0.001	0.1	0.02
LHG-IS	Mar-24	Yes	11.9	59.2	6.38	596	447.2	7.35	5 -17.2	408.5	0.2	0.00015	0.00001	0.001	0.003	0.001	0.18	0.005	0.040	0.000015	0.003	0.1	0.01
	Apr-24	No	12.5	60.1	-	658	-	7.69) - ,	69.72	0.01	0.001	0.0001	0.001	0.001	0.002	0.34	0.001	0.184	0.0001	0.001	0.5	0.09
	May-24	No	8.5	03.3 70.4		616		7.65	· -	10.05	0.01	0.001	0.0001	0.001	0.001	0.004	0.71	0.001	0.104	0.0001	0.001	0.5	0.05
	Jul-24	No	8	87.5	-	503	-	7.3	-	5.44	0.01	0.001	0.0001	0.001	0.001	0.002	0.07	0.001	0.025	0.0001	0.001	0.1	0.01
	Aug-24	No	11.4	83.0	-	408.8	-	7.74	4 -	76.59	0.01	0.001	0.0001	0.001	0.001	0.002	0.07	0.001	0.020	0.0001	0.001	0.1	0.01
	Sep-24	No	9.7	87.3	-	424.6	-	7.68	3 -	6.13	0.01	0.001	0.0001	0.001	0.001	0.002	0.06	0.001	0.045	0.0001	0.001	0.1	0.09
VD2 IS	Oct-24	No	12.4	86.5	- 0.47	432.4	- 00.1	7.59	- 42.2	2.2	0.01	0.001	0.0001	0.001	0.001	0.002	0.10	0.001	0.036	0.0001	0.001	0.1	0.02
112-13	Apr-24	No	12.3	97.1	3.47	130.0	- 55	8.52	- 43.2	1.16	0.03	0.0013	0.0001	0.00003	0.001	0.001	0.02	0.005	0.001	0.00013	0.001	0.1	0.003
	May-24	No	2.5	94.7	-	142.1	-	7.77	7 -	0.343	0.01	0.001	0.0001	0.001	0.001	0.024	0.05	0.001	0.004	0.0001	0.001	0.8	0.03
	Jun-24	No	4.7	97.1	-	118.6	-	7.24	4 -	0	0.02	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.003	0.0001	0.001	0.1	0.01
	Jul-24	No	5.9	93.5	-	58.4	-	6.78	3 -	8.87	0.17	0.001	0.0001	0.001	0.001	0.002	0.12	0.001	0.002	0.0001	0.001	0.4	0.03
	Aug-24	No	9.3	93.5	-	58.5	-	7.98	5 - D	6.97	0.06	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.1	0.01
	Oct-24	No	11.6	93.7	-	69.9	-	7.34	- 1 -	1.50	0.04	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.2	0.02
SSC-IS	Mar-24	No Flow	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-		-	-
	Apr-24	No Flow	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
	May-24	No Flow	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Jun-24	No Flow	-	- 00.1	-	150.0	-	0.00		17.00	- 0.4	-	-	-	- 0.001	0.002	- 0.07	-	- 0.002	0.0001	-	-	-
	Aug-24	No	12.1	94.0	-	102.0	-	7.78	3	3.9	0.04	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.1	0.03
	Sep-24	No	12.2	84.1	-	122.2	-	7.1	L -	3.53	0.05	0.001	0.0001	0.001	0.003	0.002	0.05	0.001	0.002	0.0001	0.001	0.7	0.03
	Oct-24	No	10.1	81.5	-	110.3	-	6.83	3 -	8.9	0.08	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.001	0.0001	0.001	0.4	0.02

Appendix | UGL Pty Limited

		Dissolved Ag	Dissolved Zn	Ammonia	Nitrogen	Reactive	Total Hardness	Total Kjedahl			Total Al	Total As	Total Cd	Total Cr	Total Cu	Total Pb	Total Mn	Total Ni	Total Ag	Total Zn	Total Fe	Total Hg
		(mg/L)	(mg/L)	(mg/L)	Oxides (mg/L)	Phosphoro us (mg/L)	(mg/L)	Nitrogen (mg/L) (TKN)	TDS (mg/L)	TSS (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Parameter							(CaCO3)															
YARRANGOBIL	LYCATCHMENT																					
Default Guideli	ine Value (DGV)	0.00002	0.0024	0.013	0.015	0.015	-	-	-	0.2	0.027	0.0008	0.0006	0.00001	0.001	0.001	1.2	0.008	0.00002	0.0024	0.3	0.00006
Limit of Report	ing (LOR)	0.001	0.005	0.010	0.010	0.010	1	0.1	10	1	0.01	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.05	0.0001
Dec - May Site	Specific Guideline V	0.00002	0.002	0.013	0.015	0.020	47	0.2	52	0.2												
June - Nov SSG	V	0.00002	0.002	0.013	0.015	0.015	30	0.2	39	1.0												
WC-RS	Mar-24	0.00001	0.001	0.050	0.05	0.005	42	0.1	/0	0.1	0.02	0.001	0.0001	0.001	0.001	0.001	0.01	0.001	0.001	0.005	0.05	0.0001
	May-24	0.001	0.005	0.020	0.01	0.01	70	0.01	102	5	0.02	0.001	0.0001	0.001	0.001	0.001	0.007	0.001	0.001	0.005	0.05	0.0001
	Jun-24	0.001	0.005	0.010	0.23	0.01	53	0.1	81	2	0.01	0.001	0.0001	0.001	0.001	0.001	0.007	0.001	0.001	0.005	0.05	0.0001
	Jul-24	0.001	0.005	0.010	0.01	0.01	17	0.1	38	8	0.09	0.001	0.0001	0.001	0.001	0.001	0.01	0.001	0.001	0.005	0.09	0.0001
	Aug-24	0.001	0.032	0.010	0.01	0.01	28	0.1	51	4	0.06	0.001	0.0001	0.001	0.001	0.001	0.007	0.001	0.001	0.005	0.07	0.0001
	Sep-24 Oct-24	0.001	0.005	0.040	0.22	0.01	31	0.2	46	1	0.04	0.001	0.0001	0.001	0.001	0.001	0.005	0.001	0.001	0.005	0.05	0.0001
WC-IS	Mar-24	0.00001	0.001	0.050	0.05	0.005	42	0.1	88	0.1	0.07	0.001	0.0001	0.001	0.001	0.001	0.004	0.001	0.001	0.000	0.1	0.0001
	Apr-24	0.001	0.005	0.010	2.42	-	67	2.42	-	11	0.15	0.001	0.0001	0.001	0.001	0.001	0.022	0.004	0.001	0.005	0.22	0.0001
	May-24	0.001	0.005	0.010	0.31	0.01	75	0.1	106	5	0.01	0.001	0.0001	0.001	0.001	0.001	0.006	0.001	0.001	0.005	0.05	0.0001
	Jun-24	0.001	0.005	0.010	0.02	0.04	53	0.1	81	1	0.01	0.001	0.0001	0.001	0.001	0.001	0.005	0.001	0.001	0.005	0.05	0.0001
	Jul-24	0.001	0.005	0.010	0.01	0.01	1/	0.1	42	5	0.11	0.001	0.0001	0.001	0.001	0.001	0.011	0.001	0.001	0.005	0.1	0.0001
	Sep-24	0.001	0.000	0.010	7.21	0.01	33	0.4	113	3	0.02	0.001	0.0001	0.001	0.001	0.001	0.002	0.001	0.001	0.005	0.05	0.0001
	Oct-24	0.001	0.005	0.010	0.02	0.01	31	0.2	39	2	0.08	0.001	0.0001	0.001	0.001	0.001	0.004	0.005	0.001	0.005	0.12	0.0001
CG-IS	Mar-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Apr-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	May-24	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	
	Jul-24	-	-	-	-	-		-	-	-		-	-	-		-	-	-	-	-	-	
	Aug-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Sep-24	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
VD1-IS	Oct-24 Mar 24	0.001	0.005	0.010	0.01	0.01	294	0.1	298	1	0.01	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.05	0.0001
111-13	Apr-24	0.0001	0.001	0.010	0.05	0.005	61	0.05	-	0.1	0.01	0.001	0.0001	0.001	0.001	0.001	0.002	0.001	0.001	0.005	0.05	0.0001
	May-24	0.001	0.005	0.010	0.01	0.01	68	0.1	95	5	0.01	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.05	0.0001
	Jun-24	0.001	0.005	0.010	0.01	0.03	51	0.1	68	1	0.03	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.05	0.0001
	Jul-24	0.001	0.005	0.010	0.01	0.01	19	0.2	48	7	0.17	0.001	0.0001	0.001	0.001	0.001	0.009	0.001	0.001	0.005	0.15	0.0001
	Aug-24 Sen-24	0.001	0.005	0.010	0.01	0.01	33	0.2	55	3	0.12	0.001	0.0001	0.001	0.001	0.001	0.004	0.001	0.001	0.005	0.09	0.0001
	Oct-24	0.001	0.006	0.020	0.01	0.01	41	0.1	60	2	0.08	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.09	0.0001
LHG-IS	Mar-24	0.00001	0.006	0.050	0.05	0.005	297	1	330	20												
	Apr-24	0.001	0.005	0.020	0.02	-	332	0.02	-	70	0.25	0.003	0.0001	0.001	0.002	0.001	0.51	0.006	0.001	0.009	2.22	0.0001
	May-24	0.001	0.005	0.040	0.06	0.01	365	0.4	402	5	0.07	0.001	0.0001	0.001	0.001	0.001	0.177	0.001	0.001	0.005	1.09	0.0001
	Jun-24	0.001	0.005	0.020	0.02	0.01	250	0.2	324	10	0.50	0.002	0.0001	0.001	0.001	0.001	0.262	0.001	0.001	0.005	0.16	0.0001
	Aug-24	0.001	0.006	0.020	0.01	0.01	282	0.1	360	9	0.09	0.001	0.0001	0.001	0.001	0.001	0.026	0.001	0.001	0.005	0.17	0.0001
	Sep-24	0.001	0.006	0.010	0.01	0.01	294	0.1	394	10	0.06	0.001	0.0001	0.001	0.001	0.001	0.051	0.001	0.001	0.005	0.19	0.0001
	Oct-24	0.001	0.005	0.020	0.01	0.01	312	0.1	362	3	0.04	0.001	0.0001	0.001	0.001	0.001	0.034	0.001	0.001	0.005	0.26	0.0001
YR2-IS	Mar-24	0.00001	0.001	0.050	0.05	0.005	27	0.01	58	0.1	0.02	0.001	0.0001	0.001	0.001	0.001	0.004	0.001	0.001	0.005	0.05	0.0001
	May-24	0.001	0.007	0.010	0.01	0.01	68	0.01	- 98	5	0.02	0.001	0.0001	0.001	0.001	0.001	0.004	0.001	0.001	0.005	0.05	0.0001
	Jun-24	0.001	0.005	0.010	0.01	0.01	51	0.1	76	1	0.03	0.001	0.0001	0.001	0.001	0.001	0.002	0.001	0.001	0.005	0.05	0.0001
	Jul-24	0.001	0.005	0.010	0.24	0.01	26	0.2	46	10	0.17	0.001	0.0001	0.001	0.001	0.001	0.012	0.001	0.001	0.007	0.16	0.0001
	Aug-24	0.001	0.005	0.010	0.01	0.01	33	0.1	59	4	0.11	0.001	0.0001	0.001	0.001	0.001	0.005	0.001	0.001	0.005	0.09	0.0001
	Sep-24	0.001	0.005	0.010	0.01	0.01	46	0.1	68 71	3	0.07	0.001	0.0001	0.001	0.001	0.001	0.006	0.001	0.001	0.005	0.07	0.0001
SSC-IS	Mar-24	0.001	0.005	0.010	0.01		43	0.2		-	0.07	0.001	0.0001		0.001	0.001	0.002	0.001	0.001	0.003	0.00	0.0001
	Apr-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	May-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Jun-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	JUL-24	0.001	0.024	0.030	0.85	0.01	62	0.9	110	1	0.09	0.001	0.0001	0.001	0.001	0.001	0.006	0.001	0.001	0.025	0.09	0.0001
	Sep-24	0.001	0.036	0.010	0.07	0.01	65	0.1	108	5	0.10	0.001	0.0001	0.001	0.003	0.001	0.001	0.001	0.001	0.028	0.08	0.0001
	Oct-24	0.001	0.005	0.010	0.18	0.01	58	0.2	100	1	0.13	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.1	0.0001

		Sheen/oil/		Dissolved	1	Specific EC				Turbidity	Discolved Al	Discolved As	Dissolved Cd	Dissolved Cr.	Dissolved Cu	Cvanida	Discolved Fe	Discolved Ph	Dissolved Mn	Dissolved Hr	Dissolved Ni		
		grease	Temp. (°C)	Oxygen (DO	DO (ppm)	(SPC	EC (uS/cm)	pН	Redox (mV)	(NTU)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	TN (mg/L)	TP (mg/L)
Parameter		0		96)		uS/cm)												1.10-1					
TALBINGO R	ESERVOIR																						
DGV		No	-	90-110	-	30-350	30-350	6.5-8	3 -	2-25	0.027	0.0008	0.0006	0.00001	0.001	0.004	0.3	0.001	1.2	0.00006	0.008	0.25	0.02
LOR				-	-	-	-			0.1	0.01	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.001	0.0001	0.001	0.1	0.01
Dec - May SS	GV			90-100	8.79	24.0	20.3	6.5-8	3 91.2	0.09	0.03	0.003	0.00002	0.00001	0.0002	0.002	0.04	0.001	0.003	0.00003	0.001	0.2	0.02
June - Nov SS	GV			90-100	11.53	38.7	26.2	6.5-8	3 95.4	1.56	0.015	0.0003	0.00002	0.00001	0.0002	0.002	0.02	0.001	0.002	0.00003	0.001	0.2	0.02
TR-RS	Mar-24	No	13.4	72.5	7.57	24	18.7	7.1	1 55	0.10	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.05	0.005	0.005	0.000015	0.0005	0.1	0.01
	Apr-24	No	12.2	85.9	-	25.9	-	7.17	7 -	0.02	0.01	0.001	0.0001	0.001	0.005	0.002	0.05	0.001	0.026	0.0001	0.001	1.3	0.02
	May-24	No	10.1	91.5	-	30.2	-	6.8	3 -	0.65	0.01	0.001	0.0001	0.001	0.001	0.004	0.05	0.001	0.002	0.0001	0.001	0.3	0.03
	Jun-24	No	8.7	91.6	-	26.4	-	8.32	2 -	0.10	0.01	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.010	0.0001	0.001	2.3	0.01
	Jul-24	No	6	92.1	-	28.7	-	7.76	6 -	1.35	0.02	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.003	0.0001	0.001	0.1	0.02
	Aug-24	No	12.7	91.5	-	26.3	-	6.67	7 -	2.0	0.02	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.4	0.02
	Sep-24	No	10.2	96.2	-	25	-	7.78	- 3	0.58	0.02	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.002	0.0001	0.001	0.2	0.03
	Oct-24	No	9.5	95.2		15.3		7.78	3	1.7	0.04	0.001	0.0001	0.001	0.001	0.002	0.05	0.001	0.008	0.0001	0.001	0.2	0.02
TORKERSCR	EEKCAICHMENI	No		90 110		30.350	30.350	65.9	2	2.25	0.027	0.0008	0.0006	0.00001	0.001	0.004	0.3	0.001	12	0.00006	0.008	0.25	0.02
DGV		NU	-	50-110	-	30-330	30-330	0.0-0	, -	0.1	0.027	0.0000	0.0001	0.00001	0.001	0.004	0.5	0.001	0.001	0.00000	0.000	0.23	0.02
LUK Dec May SS	CV CV			90,110	8 35	- 31	- 24	65.8	3 946	0.1	0.01	0.001	0.0001	0.001	0.001	0.002	0.03	0.001	0.001	0.0001	0.001	0.1	0.01
Lune - Nov SS	GV			00 110	10.2	27.0	20.5	6.5.9	3 1061	7.87	0.30	0.0003	0.00002	0.00001	0.002	0.002	0.71	0.001	0.003	0.00003	0.001	0.2	0.02
VK-RS	Mar-24	Ves	16.3	82.5	8.09	27.5	20.3	6.69	64.5	12.24	0.52	0.00015	0.00002	0.00001	0.0002	0.002	0.25	0.001	0.003	0.000015	0.001	0.2	0.02
TK 110	Apr-24	No	6.8	80.7	-	36.5	-	7.04	4 -	17.27	0.10	0.00013	0.0001	0.001	0.001	0.002	0.12	0.001	0.013	0.00013	0.001	0.6	0.03
	May-24	No	4.2	85.1	-	34.7	-	6.62	2 -	0.3	0.10	0.001	0.0001	0.001	0.001	0.004	0.17	0.001	0.026	0.0001	0.001	0.3	0.04
	Jun-24	No	3.5	84.2	-	30.1	-	7.99	э -	26.48	0.09	0.001	0.0001	0.001	0.001	0.002	0.18	0.001	0.021	0.0001	0.001	0.4	0.04
	Jul-24	No	2.9	83.1	-	27.8	-	7.4	4 -	7.97	0.19	0.001	0.0001	0.001	0.001	0.002	0.21	0.001	0.010	0.0001	0.001	0.4	0.04
	Aug-24	No	7.3	82.7	-	21.6	-	6.89	9 -	19.36	0.33	0.001	0.0001	0.001	0.001	0.002	0.29	0.001	0.017	0.0001	0.001	0.9	0.07
	Sep-24	No	12.3	86.5	-	19.5	-	7.58	- 3	15.51	0.09	0.001	0.0001	0.001	0.001	0.002	0.16	0.001	0.013	0.0001	0.001	0.2	0.05
	Mar 24	No	10.3	81.6	0.21	21.0	27.9	7.50	0 63.2	0.1	0.14	0.001	0.0001	0.001	0.0001	0.002	0.15	0.001	0.015	0.00015	0.001	0.2	0.03
TK-I3(D/3)	Apr-24	No	5.9	86.0	5.21	39.4	27.8	7.33	3 -	221.78	0.005	0.0013	0.0001	0.000	0.001	0.002	0.20	0.0003	0.000	0.00013	0.0003	0.1	0.02
	May-24	No	3.1	85.9	-	39.6	-	6.59		0.8	0.09	0.001	0.0001	0.001	0.001	0.004	0.15	0.001	0.021	0.0001	0.001	0.8	0.04
	Jun-24	No	3.2	84.6	-	38.9	-	7.76	6 -	2.46	0.06	0.001	0.0001	0.001	0.001	0.002	0.1	0.001	0.009	0.0001	0.001	0.2	0.04
	Jul-24	No	3.2	85.0	-	32.8	-	7.11	1 -	8.29	0.28	0.001	0.0001	0.001	0.001	0.002	0.22	0.001	0.005	0.0001	0.001	0.6	0.04
	Aug-24	No	7.3	84.7	-	23.2	-	6.85	5 -	22.38	0.51	0.001	0.0001	0.001	0.001	0.002	0.34	0.001	0.011	0.0001	0.001	0.6	0.04
	Sep-24	No	9.3	84.5	-	26.9	-	7.52	2 -	3.34	0.07	0.001	0.0001	0.001	0.001	0.002	0.1	0.001	0.008	0.0001	0.001	0.2	0.02
N70 IS	Oct-24	No	11.3	84.0	0.12	27	45.0	7.36	j - 01.1	6.4	0.1	0.001	0.0001	0.001	0.001	0.002	0.12	0.001	0.010	0.0001	0.001	0.3	0.04
NZG-IS	Mar-24	No	9.6	84.9	9.13	67.1	45.3	7.43	31.1	0.0	0.14	0.00015	0.00001	0.000005	0.0001	0.001	0.18	0.0005	0.004	0.000015	0.0005	0.1	0.01
	May-24	No	3.9	85.8		66.6	-	6.68	3 -	0.00	0.03	0.001	0.0001	0.001	0.001	0.004	0.00	0.001	0.007	0.0001	0.001	0.2	0.05
	Jun-24	No	4.4	82.7	-	64.1	-	8.14	4 -	0.89	0.04	0.001	0.0001	0.001	0.001	0.002	0.07	0.001	0.005	0.0001	0.001	0.2	0.01
	Jul-24	No	3.7	83.9	-	34.8	-	7.44	4 -	13.66	0.2	0.001	0.0001	0.001	0.001	0.002	0.18	0.001	0.004	0.0001	0.001	0.2	0.04
	Aug-24	No	7.7	84.4	-	28.9	-	6.95	5 -	15.47	0.44	0.001	0.0001	0.001	0.001	0.002	0.31	0.001	0.008	0.0001	0.001	0.4	0.04
	Sep-24	No	8.2	84.6	-	38.2	-	7.32	2 -	2.02	0.06	0.001	0.0001	0.001	0.001	0.002	0.08	0.001	0.004	0.0001	0.001	0.1	0.04
	Oct-24	No	11.1	84.5		39.6		7.47	7	5.3	0.08	0.001	0.0001	0.001	0.001	0.002	0.11	0.001	0.008	0.0001	0.001	0.3	0.03
YK-IS	Mar-24	No	11.4	78.0	8.53	35	25.9	6.7	7 41.1	21.44	0.45	0.00015	0.00001	0.000005	0.001	0.001	0.4	0.0005	0.018	0.000015	0.0005	0.1	0.01
	Apr-24 May-24	No	0.0	82.7	-	35.8	-	7.04 6.41	+ -	0.2	0.09	0.001	0.0001	0.001	0.001	0.002	0.15	0.001	0.015	0.0001	0.001	0.3	0.02
	lun-24	No	3.9	83.1	-	35.1	-	7.88	3 .	7.99	0.08	0.001	0.0001	0.001	0.001	0.002	0.15	0.001	0.010	0.0001	0.001	0.2	0.03
	Jul-24	No	3.2	82.8		32.5	-	7.50	7 -	11.9	0.31	0.001	0.0001	0.001	0.001	0.002	0.25	0.001	0.008	0.0001	0.001	0.3	0.07
	Aug-24	No	7.2	81.3	-	23.5	-	6.7	7 -	25.12	0.67	0.001	0.0001	0.001	0.001	0.002	0.46	0.001	0.015	0.0001	0.002	0.4	0.04
	Sep-24	No	9.3	83.4	-	23.8	-	7.41	1 -	6.24	0.09	0.001	0.0001	0.001	0.001	0.002	0.13	0.001	0.009	0.0001	0.001	0.2	0.02
	Oct-24	No	13.7	86.3		23.7		7.83	3	3.1	0.07	0.001	0.0001	0.001	0.001	0.002	0.06	0.001	0.004	0.0001	0.001	0.2	0.06
	Reference Site ex Impact Site Resul	ceeds SSGV t exceeds SSG	Vor DGV																				
italics	Result exceeds th	e Limit of Repo	orting																				

		Dissolved Ag	Dissolved Zn	Ammonia	Nitrogen	Reactive	Total Hardness	Total Kjedahl			Total Al	Total As	Total Cd	Total Cr	Total Cu	Total Pb	Total Mn	Total Ni	Total Ag	Total Zn	Total Fe	Total Hg
Deservator		(mg/L)	(mg/L)	(mg/L)	Oxides (mg/L)	Phosphoro us (mg/L)	(mg/L)	Nitrogen (mg/L) (TKN)	TDS (mg/L)	TSS (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Parameter							(CaCO3)															
TALBINGO RE	SERVOIR																					
DGV		0.00002	0.0024	0.013	0.015	0.015	-	-	-	0.2	0.027	0.0008	0.0006	0.00001	0.001	0.001	1.2	0.008	0.00002	0.0024	0.3	0.00006
LOR		0.001	0.005	0.010	0.010	0.01	1	0.1	10	1	0.01	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.05	0.0001
Dec - May SSG	ΞV	0.00002	0.002	0.013	0.015	0.02	7.5	0.1	12.5	0.2												
June - Nov SS	GV	0.00002	0.002	0.013	0.015	0.015	8	0.2	15	0.2												
TR-RS	Mar-24	0.00001	0.001	0.050	0.05	0.005	8	0.1	44	0.1												
	Apr-24	0.001	0.066	0.030	0.12	-	5	0.12	-	3	0.02	0.001	0.0001	0.001	0.006	0.001	0.039	0.002	0.001	0.067	0.07	0.0001
	May-24	0.001	0.023	0.020	0.03	0.01	5	0.3	35	5	0.03	0.001	0.0001	0.001	0.001	0.001	0.033	0.001	0.001	0.012	0.06	0.0001
	Jun-24	0.001	0.005	0.010	1.92	0.01	5	0.4	17	2	0.03	0.001	0.0001	0.001	0.001	0.001	0.056	0.001	0.001	0.005	0.07	0.0001
	Jul-24	0.001	0.005	0.030	0.04	0.01	5	0.1	17	2	0.05	0.001	0.0001	0.001	0.001	0.001	0.014	0.001	0.001	0.005	0.06	0.0001
	Aug-24	0.001	0.011	0.020	0.07	0.01	12	0.3	30	1	0.04	0.001	0.0001	0.001	0.001	0.001	0.004	0.001	0.001	0.008	0.05	0.0001
	Sep-24	0.001	0.005	0.010	0.06	0.01	14	0.1	2/	2	0.06	0.001	0.0001	0.001	0.001	0.001	0.006	0.001	0.001	0.005	0.07	0.0001
	Oct-24	0.001	0.013	0.040	0.02	0.01	14	0.2	38	4	0.07	0.001	0.0001	0.001	0.001	0.001	0.01	0.001	0.001	0.005	0.11	0.0001
YORKERSCR	EEK CATCHMENT	0.00000	0.0024	0.012	0.015	0.015				0.2	0.027	0.0008	0.0006	0.00001	0.001	0.001	1.2	0.009	0.00002	0.0024	0.2	0.00006
DGV		0.0002	0.0024	0.013	0.015	0.015	-	- 0.1	- 10	0.2	0.027	0.0006	0.0005	0.0001	0.001	0.001	0.001	0.000	0.00002	0.0024	0.5	0.00006
LOR		0.001	0.005	0.010	0.010	0.01	1	0.1	10	1	0.01	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.005	0.05	0.0001
Dec - May SS	3V	0.00002	0.002	0.013	0.015	0.02	1	0.1	30	3												
June - Nov SS	GV No. 04	0.00002	0.002	0.013	0.015	0.02	1	0.2	10	0.2												
YK-RS	Mar-24	0.00001	0.003	0.050	0.05	0.005	1	0.1	30	3	0.15	0.001	0.0001	0.001	0.007	0.001	0.021	0.006	0.001	0.016	0.46	0.0001
	Apr-24 May 24	0.001	0.013	0.020	0.02	0.01	9	0.02	- 37	24 5	0.15	0.001	0.0001	0.001	0.007	0.001	0.021	0.006	0.001	0.010	0.40	0.0001
	lun-24	0.001	0.005	0.020	0.02	0.03	9	0.4	21	15	0.23	0.001	0.0001	0.001	0.001	0.001	0.027	0.001	0.001	0.005	0.50	0.0001
	Jul-24	0.001	0.007	0.010	0.05	0.01	9	0.4	41	7	0.59	0.001	0.0001	0.001	0.001	0.001	0.017	0.001	0.001	0.005	0.53	0.0001
	Aug-24	0.001	0.012	0.010	0.01	0.01	9	0.9	34	19	1.82	0.001	0.0001	0.003	0.001	0.001	0.076	0.001	0.001	0.005	1.77	0.0001
	Sep-24	0.001	0.010	0.010	0.04	0.01	9	0.2	28	19	0.28	0.001	0.0001	0.001	0.001	0.001	0.023	0.001	0.001	0.005	0.52	0.0001
	Oct-24	0.001	0.005	0.010	0.05	0.01	5	0.2	21	22	0.24	0.001	0.0001	0.001	0.001	0.001	0.02	0.001	0.001	0.005	0.45	0.0001
YK-IS (D/S)	Mar-24	0.00001	0.002	0.050	0.05	0.005	1	0.1	15	0.1												
	Apr-24	0.001	0.005	0.010	0.03	-	16	0.03	-	3	0.1	0.001	0.0001	0.001	0.001	0.001	0.016	0.003	0.001	0.006	0.26	0.0001
	May-24	0.001	0.005	0.010	0.53	0.01	12	0.3	39	9	0.12	0.001	0.0001	0.003	0.001	0.001	0.035	0.002	0.001	0.005	0.61	0.0001
	Jun-24	0.001	0.005	0.010	0.01	0.01	12	0.2	25	2	0.48	0.001	0.0001	0.001	0.001	0.001	0.027	0.001	0.001	0.005	0.66	0.0001
	Jul-24	0.001	0.007	0.010	0.20	0.01	9	0.5	52 70	5 17	1.02	0.001	0.0001	0.001	0.001	0.001	0.011	0.001	0.001	0.005	0.32	0.0001
	Sep-24	0.001	0.003	0.010	0.03	0.01	12	0.2	29	3	0.16	0.001	0.0001	0.001	0.001	0.001	0.012	0.001	0.001	0.005	0.26	0.0001
	Oct-24	0.001	0.009	0.030	0.11	0.01	5	0.2	24	4	0.22	0.001	0.0001	0.001	0.001	0.001	0.01	0.001	0.001	0.005	0.28	0.0001
NZG-IS	Mar-24	0.00001	0.002	0.050	0.05	0.005	10	0.1	22	0.1												
	Apr-24	0.001	0.005	0.010	0.01	-	23	0.01	-	6	0.04	0.001	0.0001	0.001	0.001	0.001	0.012	0.001	0.001	0.005	0.24	0.0001
	May-24	0.001	0.007	0.010	0.03	0.01	23	0.2	60	5	0.06	0.001	0.0001	0.001	0.001	0.001	0.021	0.001	0.001	0.005	0.35	0.0001
	Jun-24	0.001	0.005	0.010	0.01	0.01	23	0.2	38	20	0.12	0.001	0.0001	0.001	0.001	0.001	0.037	0.001	0.001	0.005	0.67	0.0001
	Jul-24	0.001	0.005	0.010	0.04	0.01	12	0.2	52	8	0.22	0.001	0.0001	0.001	0.001	0.001	0.009	0.001	0.001	0.005	0.26	0.0001
	Aug-24	0.001	0.005	0.010	0.01	0.01	12	0.4	44	19	0.92	0.001	0.0001	0.001	0.001	0.001	0.023	0.001	0.001	0.005	0.85	0.0001
	Sep-24	0.001	0.005	0.010	0.01	0.01	21	0.1	41	3	0.07	0.001	0.0001	0.001	0.001	0.001	0.006	0.001	0.001	0.005	0.15	0.0001
	Mor 24	0.0001	0.005	0.020	0.07	0.01	12	0.2	20	1	0.17	0.001	0.0001	0.001	0.001	0.001	0.01	0.002	0.001	0.005	0.27	0.0001
TK-10	Apr24	0.0001	0.004	0.010	30.0	0.003	12	0.06	21	13	0.15	0.001	0.0001	0.001	0.001	0.001	0.024	0.001	0.001	0.005	0.52	0.0001
	May-24	0.001	0.005	0.010	0.05	0.01	12	0.1	48	5	0.04	0.001	0.0001	0.001	0.001	0.001	0.014	0.001	0.001	0.005	0.16	0.0001
	Jun-24	0.001	0.005	0.010	0.06	0.01	9	0.2	19	6	0.32	0.001	0.0001	0.001	0.001	0.001	0.014	0.001	0.001	0.005	0.42	0.0001
	Jul-24	0.001	0.009	0.010	0.01	0.01	9	0.3	52	7	0.8	0.001	0.0001	0.001	0.001	0.001	0.015	0.001	0.001	0.005	0.62	0.0001
	Aug-24	0.001	0.005	0.030	0.01	0.01	9	0.4	62	15	1.22	0.001	0.0001	0.003	0.001	0.001	0.026	0.001	0.001	0.005	0.99	0.0001
	Sep-24	0.001	0.005	0.020	0.01	0.01	9	0.2	26	4	0.16	0.001	0.0001	0.001	0.001	0.001	0.012	0.001	0.001	0.005	0.26	0.0001
	Oct-24	0.001	0.005	0.010	0.01	0.01	21	0.2	40	4	0.14	0.001	0.0001	0.001	0.001	0.001	0.006	0.001	0.001	0.005	0.23	0.0001
	Reference Site ex	ceeds SSGV																				
iter (in a	Impact Site Result	t exceeds SSGV	or DGV																			
naucs	Result exceeds th	e Limit of Repor	ung																			

Appendix D: Calibration Certificate

CALIBRATION CERTIFICATE - WATER

Invoice No:

Equipment Received:

Handheld S/N

Cable S/N:

Included Items:

SENSOR CALIBRATION DETAILS

Pre Calibration	Post Calibration		Accuracy	Pass	Fail
		+/-			
		+/-			
		+/-			
		+/-			
		+/-			
		+/-			
		+/-			
		+/-			
		+/-			
		+/-			
		+/-			

Findings/ Recommendations /Comments:

1/

2/

3/

4/

This is to certify that where possible, this instrument has been calibrated in accordance with the manufacturer's calibration procedure as recommended in the instrument service manual.

Regards,

Equipment Specialist ECO Environmental Holdings