Pre-construction Water Quality Monitoring Report **Event 19 2023** **Project Number: 22-013** ## Document verification Project Title: Event 19 2023 Project Number: 22-013 Project File Name: 22-013 Water Quality Monitoring Field and Laboratory Report Event 19 Final V1 | Revision | Date | Prepared by | Reviewed by | Approved by | |----------|-----------|-------------|---------------------|-------------| | Final V1 | 6/12/2023 | M. Wyburn | A. Gill
N. Smith | N. Smith | NGH Pty Ltd is committed to environmentally sustainable practices, including fostering a digital culture and minimising printing. Where printing is unavoidable, NGH prints on 100% recycled paper. W. www.nghconsulting.com.au ### **BEGA - ACT & SOUTH EAST NSW** Suite 11, 89-91 Auckland Street (PO Box 470) Bega NSW 2550 T. (02) 6492 8333 #### BRISBANE T3, Level 7, 348 Edward Street Brisbane QLD 4000 T. (07) 3129 7633 #### **CANBERRA - NSW SE & ACT** Unit 8, 27 Yallourn Street (PO Box 62) Fyshwick ACT 2609 T. (02) 6280 5053 ## GOLD COAST 2B 34 Tallebudgera Creek Road Burleigh Heads QLD 4220 (PO Box 424 West Burleigh QLD 4219) T. (07) 3129 7633 E. ngh@nghconsulting.com.au #### **NEWCASTLE - HUNTER & NORTH COAST** Level 1, 31-33 Beaumont Street Hamilton NSW 2303 T. (02) 4929 2301 #### SYDNEY REGION Unit 17, 21 Mary Street Surry Hills NSW 2010 **T.** (02) 8202 8333 #### WAGGA WAGGA - RIVERINA & WESTERN NSW 35 Kincaid Street (PO Box 5464) Wagga Wagga NSW 2650 T. (O2) 6971 9696 ## WODONGA Unit 2, 83 Hume Street (PO Box 506) Wodonga VIC 3690 T. (02) 6067 2533 NSW • ACT • QLD • VIC # **Table of contents** | 1. | Introdu | ction | 3 | |-------|-----------------------|---|----| | 2. | Progran | n and methodology | 3 | | 3. | Monitor | ing event observations and results | 5 | | 3.1. | Event 19 |) | 5 | | | 3.1.1. | Results | 7 | | | 3.1.2. | Quality Assurance / Quality Control | 26 | | 4. | Conclus | sion | 27 | | 5. | Referen | ces | 28 | | Fig | ures | | | | | | QM locations | 4 | | Figui | e 3-1 Wa | ıllaces Creek (WC-RS) | 6 | | Figui | e 3-2 Yaı | rangobilly River (YR2-RS) | 6 | | Figui | e 3-3 Ne | w Zealand Gully (NZG-IS) | 7 | | Figui | e 3-4 Tei | mperature for Talbingo Reservoir catchment | 11 | | Figui | e 3-5 Tei | mperature for Yorkers Creek catchment | 11 | | Figui | e 3-6 Dis | solved oxygen (DO%) for Talbingo Reservoir catchment | 12 | | Figu | e 3-7 Dis | solved oxygen (DO%) for Yorkers Creek catchment | 12 | | Figu | e 3-8 Dis | solved Oxygen (ppm) for Talbingo Reservoir catchment | 13 | | Figu | e 3-9 Dis | solved Oxygen (ppm) for Yorkers Creek catchment | 13 | | Figu | e 3-10 S _l | oecific Conductance (SPC μS/cm) for Talbingo Reservoir catchment | 14 | | Figu | e 3-11 S _l | oecific Conductance (SPC μS/cm) for Yorkers Creek catchment | 14 | | Figui | e 3-12 C | onductivity (µS/cm) for Talbingo Reservoir catchment | 15 | | Figui | e 3-13 C | onductivity (µS/cm) for Yorkers Creek catchment | 15 | | Figui | e 3-14 Tu | urbidity (NTU) for the Talbingo Reservoir catchment | 16 | | Figui | e 3-15 Tu | rbidity (NTU) for the Yorkers Creek catchment | 16 | | Figu | e 3-17 To | otal Suspended Solids for the Talbingo Reservoir catchment | 17 | | Figu | e 3-18 To | tal Suspended Solids for WC-RS and CG-IS, within the Talbingo Reservoir catchment | 17 | | Figui | e 3-19 To | otal Suspended Solids for the Yorkers Creek catchment | 18 | | Figui | e 3-20 P | otential of Hydrogen (pH) for Talbingo Reservoir catchment | 19 | | Figu | e 3-21 P | otential of Hydrogen (pH) for Yorkers Creek catchment | 19 | | Figui | e 3-22 O | xygen Redox Potential (ORP) for Talbingo Reservoir catchment | 20 | | Figui | e 3-23 O | xygen Redox Potential (ORP) for Yorkers Creek catchment | 20 | | Figu | e 3-24 N | trogen Oxides (mg/L) for the Talbingo Reservoir catchment | 21 | ## **Pre-construction Water Quality Monitoring Report** Event 19 2023 | Figure 3-25 | Nitrogen Oxides (mg/L) for the Yorkers Creek catchment | 21 | |-------------|--|-----| | Figure 3-26 | Reactive Phosphorous (mg/L) for the Talbingo Reservoir catchment | 22 | | Figure 3-27 | Reactive Phosphorous (mg/L) for the Yorkers Creek catchment | 22 | | Figure 3-28 | Total Hardness (CaCO ₃) for the Talbingo Reservoir catchment | 23 | | Figure 3-29 | Total Hardness (CaCO ₃) for the Yorkers Creek catchment | 23 | | Figure 3-30 | Total Kjeldahl Nitrogen (TKN) for the Talbingo Reservoir catchment | 24 | | Figure 3-31 | Total Kjeldahl Nitrogen (TKN) for the Yorkers Creek catchment | 24 | | Figure 3-32 | Ammonia (mg/L) for the Talbingo Reservoir catchment | 25 | | Figure 3-33 | Ammonia (mg/L) for the Yorkers Creek catchment | 25 | | Append | ices | | | Appendix A | Event Data Table | A-l | | Appendix B | Observations and Field Data | B-l | | Appendix C | Laboratory Certificates | | | Appendix D | RPD Table | D-l | | Annendiy F | Calibration Certificates | F_I | ## 1. Introduction In 2020 Snowy Hydro Limited (Snowy Hydro) obtained approval (application number SSI 9208 and EPBC 2018/8322) to expand the existing Snowy Mountains Hydro-electric Scheme (Snowy Scheme), by linking the existing Tantangara and Talbingo reservoirs through a series of underground tunnels and constructing a new underground hydro-electric power station (referred to as 'Snowy 2.0'). To connect Snowy 2.0 to the National Energy Market (NEM), a new transmission connection is required. NSW Electricity Networks Operations Pty Ltd as a trustee for NSW Electricity Operations Trust (known as TransGrid and the Proponent) will construct a substation and overhead transmission lines (the Project) to facilitate the connection of Snowy 2.0 to the existing electrical transmission network. The Project location is approximately 27 kilometres (km) east of Tumbarumba, New South Wales (NSW). UGL has been engaged on behalf of the Proponent to undertake the Project. The purpose of the pre-construction water quality monitoring is to address the requirements of the Environmental Impact Statement (EIS) (Jacobs 2020) that was prepared by the Proponent under Part 5, Division 5.2 of the NSW *Environmental Planning and Assessment Act 1979* to assess the environmental impacts of the proposed Project. Subsequently, an Amendment Report (TransGrid 2021b) was submitted with the Response to Submissions (TransGrid 2021a) to the Department of Planning and Environment (DPE) with updated mitigation measures for the Project. The objective of the pre-construction surface water quality monitoring is to collect baseline data prior to Project construction works. Baseline data will be compared to ANZG (2018) guidelines to characterise the existing surface water quality. The data will be compared to the water quality objectives (WQO) for the Project area. # 2. Program and methodology The Pre-construction Water Quality Monitoring Program and Methodology (the Program) (NGH 2022) has been prepared to detail the WQOs for the Project, the location of the monitoring locations and the methodology for water sampling. The Project area within Kosciuszko National Park is an area of high conservation value. Therefore, the water quality objectives for physical and chemical stressors includes **no change beyond natural variability** (ANZG 2018). The Default Guideline Values (DGV) for Upland Rivers has been provided for physical and chemical stressors and is detailed in the Program (NGH 2022). The location of the sampling points in relation to the Project footprint is provided in Figure 2-1. Figure 2-1 WQM locations ## 3. Monitoring event observations and results Images for Wallaces Creek, Yarrangobilly River and New Zealand Gully are provided as Figure 3-1 to Figure 3-3. Water quality results for each site are provided in Appendix A. Results are highlighted where they exceed the default guideline value (refer to the Program (NGH 2022)). Table 3-1 identifies exceedances of the DGVs for metals, cyanide and nutrients. Physico-chemical results have been provided in Figure 3-4 to Figure 3-33. Field data and observations are provided in Appendix B. ## 3.1. Event 19 NGH has conducted 19 monthly sampling events since March 2022 (Event 1). Reports for each event were prepared following receival of the laboratory results (NGH 2022a – 2023i). The results of Event 1 through to Event 18 have been compared in this report to the results of Event 19. NGH Environmental Scientists, Nicola Smith and Martin Wyburn, conducted the Event 19 monitoring with a UGL representative on 27 and 28 September 2023. The weather was overcast and slightly windy on the 27 September, and warm and sunny on the 28 September. Data from the Cabramurra SMHEA automatic weather station on 27 September 2023 (Station ID 072161) indicates that morning winds were from the west with speeds of 20 km/hr. During the afternoon, winds were from the west with speeds of 20 km/hr. Temperatures on the day included a low of 8.1°C and a high of 13.7°C. Data from the Tumbarumba weather station for 28 September 2023 (Station ID 072043) indicates that the weather was calm with temperatures ranging from a low of 3.5°C to a high of 24.0°C. Clear flows were observed at most locations. However, cloudy flows were noted at LHG-IS, YK-IS (D/S), YK-IS and YK-RS. No hydrocarbon sheen or odours were noted. The banks of each channel were well vegetated, with the vegetation matrix weedier in some locations. Evidence of bank erosion from hooved animals was observed at the New Zealand Gully site, the Yorkers Creek impact site and the Yorkers Creek reference site. Water was observed to have moderate to fast flows. Water levels within Talbingo Reservoir have replenished since the last sampling event, however the water level at the Sheep Station Creek site had decreased. Figure 3-1 Wallaces Creek (WC-RS) Figure 3-2 Yarrangobilly River (YR2-RS) Figure 3-3 New Zealand Gully (NZG-IS) ## **3.1.1.** Results The results indicate that the
water quality in the locations where samples were taken generally meets the DGVs for Upland Rivers with a 99% species protection level for toxicants. Locations where a laboratory result was returned for a physical or chemical stressor above the DGV are provided in Table 3-1. Table 3-1 Results above the DGV for Upland Rivers with 99% species protection level | Site
identification | Analyte | DGV | Result | Comment | |------------------------|-----------------------------|--------|--------|---| | WC-RS | Aluminium
mg/L | 0.027 | 0.04 | The results for Aluminium have slightly decreased, when compared with results for Event 18. | | | Chromium
mg/L | 0.0001 | 0.004 | Results for Chromium are elevated, which is atypical of this sampling location. The results for Total Phosphorus have increased, | | | Total
Phosphorus
mg/L | 0.02 | 0.04 | when compared with results for Event 18. | | CG-IS | Aluminium | 0.027 | 0.06 | The results for Aluminium have remained | | Site
identification | Analyte | DGV | Result | Comment | |------------------------|-----------------------------|---------|--------|--| | | mg/L | | | consistent with results for Event 18. | | | Chromium
mg/L | 0.00001 | 0.003 | The results for Chromium are elevated, which is atypical for this location. | | | Zinc mg/L | 0.0024 | 0.004 | Results for Zinc are consistent with prior sampling events. | | LHG-IS | Aluminium
mg/L | 0.027 | 0.07 | The results for Aluminium have decreased compared with results for Event 18. | | | Lead mg/L | 0.001 | 0.005 | Results for Lead and Zinc have remained consistent with the results from Event 18. | | | Zinc mg/L | 0.0024 | 0.004 | Results for Chromium have increased compared to results from Event 18 | | | Chromium
mg/L | 0.00001 | 0.003 | The results for Copper have remained consistent with the results from Event 18. | | | Copper mg/L | 0.001 | 0.002 | | | WC-IS | Aluminium
mg/L | 0.027 | 0.04 | Results for Aluminium have decreased when compared with Event 18. | | | Chromium
mg/L | 0.00001 | 0.003 | Results for Chromium are elevated, when compared to Event 18. | | YK-IS (D/S) | Aluminium
mg/L | 0.027 | 0.34 | Results for Aluminium are consistent with Event 18. | | | Chromium | 0.00001 | 0.007 | Results for Chromium have increased, when compared to Event 18. | | | mg/L | 0.00001 | 0.007 | Located within Bago State Forest and adjacent to an unsealed track. Unknown activities within the State Forest upstream. | | | | | | Sample taken upstream of culvert. | | NZG-IS | Aluminium
mg/L | 0.027 | 0.19 | Results for Aluminium and Lead have remained consistent, when compared with Event 18. | | | Lead mg/L | 0.001 | 0.004 | The results for Total Phosphorus have increased, when compared to Event 18. | | | Tatal | 0.00 | 0.04 | Located within Bago State Forest. | | | Total
Phosphorus
mg/L | 0.02 | 0.04 | Sample taken upstream of timber supported unsealed track bridge. Banks heavily vegetated, shallow channel. | | Site
identification | Analyte | DGV | Result | Comment | |------------------------|-----------------------------|---------|--------|---| | YK-RS | Aluminium
mg/L | 0.027 | 0.69 | Results for Aluminium have decreased slightly, when compared to Event 18. | | | Copper mg/L | 0.001 | 0.002 | Copper, Lead and Total Phosphorous are elevated, compared with previous sampling events. | | | | | | Results for Zinc have decreased, when compared to Event 18. | | | Lead mg/L | 0.001 | 0.004 | Results for Iron have remained consistent, when compared to Event 18. | | | Total
Phosphorus
mg/L | 0.02 | 0.08 | Located within Bago State Forest and adjacent to an unsealed track. Unknown activities within the State Forest upstream. | | | Zinc mg/L | 0.002 | 0.003 | Sample taken downstream of culvert under unsealed track. Flow through culvert is restricted upstream causing a wetland environment. | | | Iron mg/L | 0.3 | 0.53 | upstream causing a wettand environment. | | YK-IS | Aluminium
mg/L | 0.027 | 0.49 | Results for Aluminium have remained consistent when compared with Event 18. | | | Iron mg/L | 0.3 | 0.32 | Iron has slightly increased when compared to Event 18 (0.31 to 0.32). | | | Copper mg/L | 0.001 | 0.002 | Results for Copper and Total Phosphorus are both elevated, when compared to Event 18, which is atypical of this site. | | | Total
Phosphorus
mg/L | 0.02 | 0.11 | | | YR1-RS | Aluminium
mg/L | 0.027 | 0.06 | Results for Aluminium have decreased, when compared with Event 18. | | | Chromium mg/L | 0.00001 | 0.002 | Results for Chromium are elevated, which is atypical of this location. | | | Total
Phosphorus
mg/L | 0.02 | 0.38 | The results for Total Phosphorus are elevated, when compared to Event 18. | | YR2-RS | Aluminium
mg/L | 0.027 | 0.06 | Result for Aluminium have decreased, when compared to Event 18. | | SSC-IS | Aluminium
mg/L | 0.027 | 0.25 | Result for Aluminium have decreased since Event 18. | | | Chromium
mg/L | 0.00001 | 0.002 | Results for Chromium and Copper are elevated, which is atypical of this location. Results for Total Nitrogen and Total Phosphorus | | Site
identification | Analyte | DGV | Result | Comment | |------------------------|------------------------------|-------|--------|--| | | Copper mg/L | 0.001 | 0.002 | have increased significantly, when compared to Event 18. | | | Total
Nitrogen
mg/L | 0.25 | 5 | | | | Total
Phosphorus
mg/L | 0.02 | 0.04 | | | TR-RS | Lead mg/L | 0.001 | 0.02 | Result for Lead have increased since Event 18, which is atypical of this site. | | | Total
Phosphorous
mg/L | 0.02 | 0.003 | Results for Total Phosphorous have increased, when compared to Event 18. | Dissolved Oxygen (DO%) at LHG-IS was below the 90 - 110 assigned DGV (refer to Figure 3-6). Water temperatures ranged from 9.7 degrees Celsius at NZG-IS to 16.2 degrees Celsius at TR-RS, refer to Figure 3-4 and Figure 3-5. Many of the results are recorded as below (<) the limit of detection. To enable calculation of the statistics, the *Limit of Detection Divided by Two (LOD/2) Method* (Cohen and Ryan 1989) has been applied. This data is provided in Appendix A. The following figures, Figure 3-4 to Figure 3-33 display physico-chemical water quality through time for monitoring events 1 (March 2022) to 19 (September 2023). Where a DGV is available, these values are shown on the graph and have been included for dissolved oxygen (%), conductivity, pH and turbidity. Although the Talbingo Reservoir is the ultimate catchment for both the Yarrangobilly River and tributaries, and Yorkers Creek and tributaries, the data has been divided into the Talbingo Reservoir catchment, which include the Talbingo Reservoir reference site sampling location and the Yarrangobilly River and its tributaries. These are all located in the Kosciuszko National Park. The Yorkers Creek catchment includes the three sampling locations along Yorkers Creek and New Zealand Gully, which are all located in the Bago State Forest. The confluence of Yorkers Creek with Tumut River (Talbingo Reservoir) is downstream of sampling location TR-RS but upstream of the confluence of the Yarrangobilly River and Tumut River. Temperatures within the Talbingo Reservoir catchment have generally increased when compared with Event 18. TR-RS and YR1-RS both recorded notable increases in temperature during Event 19, from 8.3°C and 8.8°C during Event 18 to 16.2°C and 14.3°C, respectively, refer to Figure 3-4. Temperatures within the Yorkers Creek catchment have also increased. YK-RS recorded a notable increase in temperature, from 9°C during Event 18 to 16°C during Event 19, refer to Figure 3-5. Figure 3-4 Temperature for Talbingo Reservoir catchment Figure 3-5 Temperature for Yorkers Creek catchment All DO (%) results for the Talbingo Reservoir catchment, excluding LHG-IS were within the acceptable DGV range (90-110%) for Event 19. TR-RS recorded the highest DO (%) reading of 105.8%. It has recorded the highest reading over the last four events. LHG-IS recorded a reduction in DO (%) from 91.3 during Event 18 to 86.5 during Event 19, refer to Figure 3-6. DO (%) results for the Yorkers Creek catchment were all within the acceptable DGV value (90-110%), refer to Figure 3-7. Figure 3-6 Dissolved oxygen (DO%) for Talbingo Reservoir catchment Figure 3-7 Dissolved oxygen (DO%) for Yorkers Creek catchment The results for DO (ppm) for the Talbingo Reservoir catchment have all decreased in comparison with Event 18, refer to Figure 3-8. The highest reading for DO (ppm) was recorded at TR-RS (9.85 ppm). Results for DO (ppm) within the Yorkers Creek catchment have also decreased since Event 18; the highest reading for DO (ppm) was at YK-IS (D/S) (9.17 ppm), refer to Figure 3-9. Figure 3-8 Dissolved Oxygen (ppm) for Talbingo Reservoir catchment Figure 3-9 Dissolved Oxygen (ppm) for Yorkers Creek catchment Results for specific conductance within the Talbingo Reservoir catchment have all shown an increase when compared to last four events, except for CG-IS and LHG-IS, which have decreased since Event 18, refer to Figure 3-10. LHG-IS and CG-IS returned elevated results of 529 μ S/cm and 481.4 μ S/cm, respectively. Results for specific conductance within the Yorkers Creek catchment for Event 19 have slightly decreased, excluding NZG-IS, which slightly increased from 44.5 μ S/cm during Event 18, to 46.6 μ S/cm during Event 19, refer to Figure 3-11. Figure 3-10 Specific Conductance (SPC µS/cm) for Talbingo Reservoir catchment Figure 3-11 Specific
Conductance (SPC µS/cm) for Yorkers Creek catchment Conductivity readings within the Talbingo Reservoir catchment have slightly increased since Event 18, refer to Figure 3-12. Conductivity (μ S/cm) results for CG-IS and LHG-IS continues to be notably higher than the other sites, with readings above the upper DGV value (350 μ S/cm). Conductivity readings within the Yorkers Creek catchment have increased, refer to Figure 3-13. NZG-IS continues to return the highest reading for this catchment (32.9 μ S/cm), with a reading above the lower DGV value (30 μ S/cm). Figure 3-12 Conductivity (μ S/cm) for Talbingo Reservoir catchment Figure 3-13 Conductivity (µS/cm) for Yorkers Creek catchment Turbidity values were predominantly below the lower DGV thresholds (2 - 25 NTU) for the Talbingo Reservoir catchment, except for LHG-IS and SSC-IS (16.8 and 2.7 NTU respectively) for Event 19. Turbidity readings within the Talbingo Reservoir catchment have slightly decreased from Event 18 excluding LHG-IS, refer to Figure 3-14. Figure 3-14 Turbidity (NTU) for the Talbingo Reservoir catchment Turbidity readings within the Yorkers Creek catchment have slightly decreased since Event 18, refer to Figure 3-15. YK-RS registered the highest reading (21.8 NTU). Figure 3-15 Turbidity (NTU) for the Yorkers Creek catchment Results for total suspended solids (TSS) within the Talbingo Reservoir catchment for Event 19 were below the Limit of Reporting (LOR), with the exception of WC-RS (2 mg/L) and SSC-IS (5 mg/L), refer to Figure 3-17. Similarly, results for WC-RS and CG-IS for Event 19 were below the LOR, refer to Figure 3-18. Figure 3-16 Total Suspended Solids for the Talbingo Reservoir catchment Figure 3-17 Total Suspended Solids for WC-RS and CG-IS, within the Talbingo Reservoir catchment Results for total suspended solids were all below the LOR within the Yorkers Creek Catchment, refer to Figure 3-19. Figure 3-18 Total Suspended Solids for the Yorkers Creek catchment Values of pH for the Talbingo Reservoir catchment have remained fairly consistent during Event 19. WC-RS, LHG-IS, SSC-IS and TR-RS all recorded a decrease in pH, while WC-IS, CG-IS, YR1-RS and YR2-RS all recorded an increase in pH. All sites had values of pH within the DGV range (6.5 – 8 pH units), refer to Figure 3-20. Values of pH for the Yorkers Creek catchment have decreased at all sites apart from NZG-IS, which registered an increase in pH units, refer to Figure 3-21. All sites had values of pH within the DGV range (6.5 – 8 pH units). Figure 3-19 Potential of Hydrogen (pH) for Talbingo Reservoir catchment Figure 3-20 Potential of Hydrogen (pH) for Yorkers Creek catchment The values for oxygen redox potential (ORP) within the Talbingo Reservoir catchment have increased at all sites, with the exception of LHG-IS (3.3 mV), a notable decrease from Event 18 (54.1 mV), refer to Figure 3-22. Within the Yorkers Creek catchment, ORP has increased at YK-IS (D/S) and YK-RS and decreased at NZG-IS and YK-IS, refer to Figure 3-23. Figure 3-21 Oxygen Redox Potential (ORP) for Talbingo Reservoir catchment Figure 3-22 Oxygen Redox Potential (ORP) for Yorkers Creek catchment Within the Talbingo Reservoir Catchment, Nitrogen Oxides (mg/L) were all below the laboratory LOR, refer to Figure 3-24. All results were below the DGV value of 0.15 mg/L. Similarly, results for the Yorkers Creek catchment were below the DGV (0.15 mg/L) across all sites, refer to Figure 3-25. Figure 3-23 Nitrogen Oxides (mg/L) for the Talbingo Reservoir catchment Figure 3-24 Nitrogen Oxides (mg/L) for the Yorkers Creek catchment Results for Reactive Phosphorous (mg/L) were all below the laboratory's LOR (with the exception of WC-IS and YR1-RS) within the Talbingo Reservoir catchment, refer to Figure 3-26. A peak result of 0.07 mg/L was recorded at YR1-RS. Results for Reactive Phosphorous within the Yorkers Creek catchment were below the LOR, refer to Figure 3-27. Figure 3-25 Reactive Phosphorous (mg/L) for the Talbingo Reservoir catchment Figure 3-26 Reactive Phosphorous (mg/L) for the Yorkers Creek catchment Total Hardness (CaCO₃, mg/L) within the Talbingo Reservoir catchment has remained consistent, with results varying from very soft at TR-RS (8 mg/L) to hard at LHG-IS (296 mg/L), refer to Figure 3-28. Results for Total Hardness (CaCO₃, mg/L) within the Yorkers Creek catchment were all below the laboratory's LOR, except for NZG-IS. NZG-IS recorded a decrease when compared to Event 18 (8 to 16 mg/L), refer to Figure 3-29. Figure 3-27 Total Hardness (CaCO₃) for the Talbingo Reservoir catchment Figure 3-28 Total Hardness (CaCO₃) for the Yorkers Creek catchment Results for Total Kjeldahl Nitrogen (TKN, mg/L) were below the LOR for all sites within the Talbingo Reservoir, excluding SSC-IS, which recorded 5 TKN (mg/L), refer to Figure 3-30. TKN results for the Yorkers Creek catchment were below the LOR for all sites, refer to Figure 3-31. Figure 3-29 Total Kjeldahl Nitrogen (TKN) for the Talbingo Reservoir catchment Figure 3-30 Total Kjeldahl Nitrogen (TKN) for the Yorkers Creek catchment Ammonia (mg/L) levels were below the LOR for all sites within the Talbingo Reservoir and Yorkers Creek catchments for Event 19, refer to Figure 3-32 and Figure 3-33. Figure 3-31 Ammonia (mg/L) for the Talbingo Reservoir catchment Figure 3-32 Ammonia (mg/L) for the Yorkers Creek catchment ## 3.1.2. Quality Assurance / Quality Control A Quality Assurance and Quality Control (QA/QC) program was undertaken as part of this investigation including: - A field duplicate sample, at a rate of one per 20 samples, was taken (DUP01) from the WQM site TR-RS on 28 September 2023. DUP01 was analysed for metals and metalloids. The duplicate sample has been compared against the TR-RS sample by Relative Percentage Difference (RPD) and has returned within an acceptable range (less than 30% for inorganic or less than 5 times the laboratory LOR). Results for Lead (Pb) and Manganese (Mn) returned a result of 33%, slightly above the acceptable range, but is less than 5 times the LOR, therefore the results were deemed negligible. - A water blank was supplied by the laboratory. The water blank sample was analysed for metals and metalloids. There were no exceedances of the sample results above the LORs. NGH consider the QA/QC program to have been effective and the data reliable and representative to achieve the objectives of the investigation. Refer to Appendix C for the laboratory analysis certificate, Appendix D for the RPD Table and Appendix E for the calibration certificates. ## 4. Conclusion Water temperatures for Event 19 have increased across both catchments when compared to water temperatures for Event 18. This continues the trend an increase in temperature and can be attributed to seasonal changes. Results for DO (%) have remained consistent across both catchments during Event 19. DO (ppm) have decreased across both catchments for Event 19. Similarly, specific conductance (μ S/cm) and conductivity readings have remained consistent across both catchments when compared with results for Event 18. NZG-IS was one outlier that saw a notable increase. The pattern between sites is mostly reflective of the pattern for specific conductance. pH has generally remained consistent within the Talbingo Reservoir catchment. pH results for the Yorkers Creek catchment generally decreased, with the exception of NZG-IS, which recorded an increase in pH. All sites had values of pH within the DGV range (6.5 – 8 pH units). Turbidity (NTU) readings have decreased across both the Talbingo Reservoir catchment and the Yorker's Creek catchment, excluding LHG-IS, which increased. The values for oxygen redox potential (ORP) within the Talbingo Reservoir catchment increased at all sites except for LHG-IS. Within the Yorkers Creek catchment, ORP has increased at YK-IS (D/S) and YK-RS, and decreased at YK-IS and NZG-IS. Results for TSS were below the laboratory LOR, except for WC-RS (2 mg/L) and SSC-IS (5 mg/L). Nitrogen Oxides (mg/L) were all below the laboratory LOR within both catchments. Results for all sites were below the DGV (0.15 mg/L). Reactive Phosphorous (mg/L) were below the laboratory LOR at all sites within the Talbingo Reservoir catchment, with the exception of WC-IS and YR1-RS. Similarly, results for Reactive Phosphorous were below the LOR for all sites within the Yorkers Creek catchment. Total Hardness (CaCO₃) remained consistent within the Talbingo Reservoir catchment for Event 19, varying from very soft at TR-RS (8 mg/L) to hard at LHG-IS (296 mg/L). Within the Yorkers Creek catchment, results were all below the laboratory's LOR, except for NZG-IS. NZG-IS recorded a decrease when compared to Event 18 (8 to 16 mg/L). Results for Total Kjeldahl Nitrogen (TKN, mg/L) were below the laboratory LOR for both catchments, with the exception of SSC-IS (5 mg/L). Results for Ammonia were also below the laboratory LOR for both catchments. Laboratory results for Event 19 were generally consistent with the results of the previous monitoring events, with most analytes reported below the Limit of Reporting. Results exceeded the DGV for: - Aluminium (0.027 mg/L) at all sites, excluding TR-RS - Chromium (0.00001 mg/L) at WC-RS, WC-IS, CG-IS, YR1-RS, LHG-IS, SSC-IS and YK-IS (D/S) - Iron (0.3 mg/L) at YK-RS and YK-IS - Total Nitrogen (0.25 mg/L) at SSC-IS - Total Phosphorus (0.02 mg/L) at WC-RS, YR1-RS, YK-RS, YK-IS, SSC-IS, TR-RS and NZG-IS - Zinc (0.0024 mg/L) at CG-IS, LHG-IS and YK-RS - Lead (0.001 mg/L) at LHG-IS, NZG-IS, TR-RS and YK-RS. All results and statistics are provided in Appendix A. ## 5. References Jacobs Pty Ltd. 2020. Snowy 2.0 Transmission Connection Project EIS. NGH Pty Ltd. 2022. Pre-construction Water Quality Monitoring Program and Methodology. NGH Pty Ltd. 2022a. Pre-construction Water Quality Monitoring Report: Event 1 April 2022. NGH Pty Ltd. 2022b. Pre-construction Water Quality Monitoring Report: Event 2 April 2022. NGH Pty Ltd.
2022c. Pre-construction Water Quality Monitoring Report: Event 3 May and June 2022. NGH Pty Ltd. 2022d. Pre-construction Water Quality Monitoring Report: Event 4 June 2022. NGH Pty Ltd. 2022e. Pre-construction Water Quality Monitoring Report: Event 5 July 2022. NGH Pty Ltd. 2022f. Pre-construction Water Quality Monitoring Report: Event 6 August 2022. NGH Pty Ltd. 2022g. Pre-construction Water Quality Monitoring Report: Event 7 October 2022. NGH Pty Ltd. 2022h. Pre-construction Water Quality Monitoring Report: Event 8 October 2022. NGH Pty Ltd. 2022i. Pre-construction Water Quality Monitoring Report: Event 9 November 2022. NGH Pty Ltd. 2022j. Pre-construction Water Quality Monitoring Report: Event 10 December 2022. NGH Pty Ltd. 2023a. Pre-construction Water Quality Monitoring Report: Event 11 January 2023. NGH Pty Ltd. 2023b. Pre-construction Water Quality Monitoring Report: Event 12 February 2023. NGH Pty Ltd. 2023c. Pre- construction Water Quality Monitoring Report: Event 13 March 2023. NGH Pty Ltd. 2023d. Pre- construction Water Quality Monitoring Report: Event 14 April 2023. NGH Pty Ltd. 2023e. Pre- construction Water Quality Monitoring Report: Event 15 June 2023. NGH Pty Ltd. 2023f. Pre- construction Water Quality Monitoring Report: Event 16 June 2023. NGH Pty Ltd. 2023g. Pre- construction Water Quality Monitoring Report: Event 16 June 2023. NGH Pty Ltd. 2023h. Pre- construction Water Quality Monitoring Report: Event 17 June 2023. NGH Pty Ltd. 2023i. Pre- construction Water Quality Monitoring Report: Event 18 June 2023. TransGrid. 2021a. Snowy 2.0 Transmission Connection Project Submissions Report. TransGrid. 2021b. Snowy 2.0 Transmission Connection Project Amendment Report. Event 19 2023 # **APPENDIX A EVENT DATA TABLE** | The content will be | | | Sheen/ol/
grasse | Temp. | Dissolved
Oxygen (DO | .00 | Specific
Sic (SPC | EC (uS/on) | gA4 | Redax | Turbidity | A. | As . | Cd(mgL) | Cr(mg/L) | cu. | Cyanide | Fe | Po | Ma | Hg (mg/L) | Ni
(mal) | TN TP | Ag (mg/L) | 2n | Armoria | Nitrogen | Reactive | Total
Hardness | Totai
Kjedahi
Nitrogen | TOS TSI | |--|------------------------------------|---|--------------------------|-------------------------|--------------------------|-------------------------|--------------------------|--------------------------------|--------------------------|---------------------------|------------------------------|-------------------------------|----------------------------------|-------------------------------|--|---|-------------------------|--------------------------|----------------------------|--------------------------|---------------------------------|----------------------------|-----------------------------------|-------------------------------|------------------------|----------------------|-----------------------|------------------------|-----------------------|------------------------------|-------------------------------| | | 240 Pe ser
907 (Mark)
WC-89 | Colorina WOM
Colorina Value
Control Value | grease
No. | 162 | %)
\$6.448
90.1 | (ppm) | uSaloss) | 14.104 | 444 | (nV) | (NTU)
9.86 | AAPP | n nana | 0.0006 | A. A | (mgL) | (IngiL) | (mg/L) | A AM | (Ing.L) | AMM | (mgt) (| ngt) (mgt) | A 00000 | A MILA | (MBE) | Chides
A.MS | Phosphorous | (CxC02) | Nitrogen
(TKN) | mgL (mg/ | | | | Decid
Decid | No. | 12.4
9.2
7.3 | 83
83 | 7.84
7.86
10.78 | 108
181
1288 | 36
36
36,3 | 7.66
7.66 | 1984
1983
1284 | N 10 | 0018
0018 | 2.00018
2.00018
3.00018 | 2.0000
2.0000
2.0000 | E0081
E0081 | 0.0001
0.0001 | 0.001
0.001 | 1.000
1.000 | 0.0000
0.0000
0.0000 | 0001
0.0000
0.0000 | 2.0000
2.0000
2.0000 | 2.00E | 67 600
67 600
67 600 | 0.0001
0.0001 | 5001
5001 | | - 12 | | | 41
41 | 10 E | | | | David
David
David | - | 93
132
13.1 | 78.86
78.8
78.8 | 9.74
7.67
7.64 | 894
994
714 | 62.7
64.6 | 100 | 1924
797
984 | 716
240
140 | 0011 | 2.000 H | 2.0000
2.0000
2.0000 | C0081 | 0.000F | 0.001 | 100 | 0.000 | 1002 | 13000
13000
13000 | 2300E | 07 000
07 000
01 000 | 0.00001
0.00001 | 5001
5001 | | | | | 41
41 | 46 4
13 4 | | | | Erect 10
Erect 11 | No. | 112 | 100.0 | 8.12
8.7 | NO. | 79.5
79.5
83.9 | 740
780
780 | 107.6
167.6
79.1 | 100
100 | 6613
663 | 2.000mg | 2.0000
2.0000 | C0081 | 0.0001
0.0001 | 0.001
0.001 | 108
108 | 0.000 | 5004
5004 | 2.0000
2.0000 | 2.000
2.000
2.000 | 21 000
21 000 | 0-00001
0-00001 | 0019 | | 200 | | | 21
21 | - | | | | Eart 12
Eart 13
Eart 14 | - No. | 21.3
19.4
12 | 100.8 | 8.12
9.11 | 1269 | 116.1
161.8
83.2 | 1.00
7.00 | 73.1
17
1283 | 100 | 0011
003 | 2.00012
2.00012
2.00012 | 2.0001
2.0001
2.0001 | C0081
C0081 | 0.0001
0.0001 | 0.001 | 100 | 0.000 | 2.000
2.000
2.000 | 2.0000
2.0000
2.0000 | 1000 | 21 030
21 030
21 03 | 0.00001
0.00001 | 5003
5003 | 101 | | 100 | 1 | - 1 | 2 | | | | Dani II
Dani II
Dani II | - | 82
61
83 | 91.8
91.7 | 11.0 | 113
267
267 | 363
65
664 | 720
720
720
730 | 125.0
21.0
23.4 | 1922
629 | 073
011
023 | 1 000 TE | 2 March | C00001 | | 0.001
0.001
0.001 | 100
100
100 | | 1001
1002
1002 | | 100 | 07 000
1 000
01 007 | 0.00001
0.00001
0.00001 | 6002
6002
6003 | 100 | | 227 | É | E. | # | | | | Monthly
Mo | | 12.3
6.10 | 65.20
200.85 | 5.0
5.0 | 100.0
51.30 | 26.1
26.90 | 1.00 | 10.40
10.40 | 101 | 001
001 | 030 | 0.00 | 0.00 | 0.00 | 2.00
2.00 | 0.02
0.01 | 5.00
5.00 | E002
E00 | 2.000D
2.000 | 5.000
5.00 | 012 001
012 001 | 5.00
5.00 | 000 | E05 | 008
008 | 921 | 2100
2100 | 010
010 | 100 51 | | | | Mean
Count
St. Day | | 19.00 | 85.62
17.00
16.66 | 9.45
18.00 | 98.0
17.00
26.63 | 10.18
16.00
26.10 | 7.7%
1930
0.58 | 103.60
19.00
63.23 | 6.00
18.00
8.71 | 010
1930
018 | 0.00
19:00
0:00 | 0.00
19.00
0.00 | 0.00
19.00
0.00 | 0.00
19.00
0.00 | 100
1800
100 | 1800
1800
510 | 100
1930
100 | 100
1900
100 | 100
1930
100 | 100
1930
100 | 030 008
9600 1930
089 011 | 19.00
19.00 | 900
900
000 | 8.00
8.00 | 9.00
19.00 | 9.00
9.00 | 6312
830
1869 | 919
1900
921 | 90 30
20 30 | | | wes | David
David
David | No. | 163
128
93 | 60 E | 7.64
7.63 | 126.7
126
68 | 105.8
10.3
30 | 786 | 76
1658
1658 | 0.32
1.36
60.77 | 001
0011 | 2.000 to
2.000 to
2.000 to | 6 00001
6 00001 | C0081 | 0.000
0.000
0.000 | 0.001 | 100 | 0.000 | 0001
0002
0.000 | 1 0000
1 0000
1 0000 | 1000 | 01 000
01 000 | 6-0000Y
6-0000Y | 0001
0001 | | - | | | 01
01 | - | | | | Destil
Destil | - | 78
93 | 964
7236 | 11.65
5.55 | 87
864 | 603
603 | 7.85
5.25 | 1013 | 126
238 | 0011
0011 | 1000 | 2.0000
2.0000 | 0.00001
0.00001 | 0.000F | 0.00
0.00 | 100 | 0.000 | 2 000 E | 5.0000
5.0000 | | 1 60 | 5-0000
5-0000 | 5001 | | | | | | 2 | | | | David
David | - | 13.1 | 102 | 7.62 | 717
887 | 10.4
00.6 | 740
788 | 1071 | 10.1
11.79 | 0.00%
0.38 | 1001 | 2.0000
2.0000 | 00001 | 0.000 | 220 | 100 | 0.000 | E001
E003 | 1000 | | 81 601
81 602 | 1000 | 5001 | | | | | | 36 | | | | Eart 11
Eart 12
Eart 13 | - 5 | 10
21.7
19.6 | 106.8 | 5.10
5.00 | 94
126 | 83.2
107.1
146.1 | 7 M
128 | 92.6
76.2 | 2.16
5.1
1.01 | 000
0011 | 2.000 H | 2 20001
2 20001 | 00001
00001 | E-0007
E-0007 | 0.001 | 60
60
60 | 0.000 | 5003 |
1000 | 2000
2000
2000 | 27 C00
27 C00 | 6-3000Y | 560 | 201 | | 100 | - | | - | | | | Earth 16
Earth 16
Earth 16 | - | 12.1
9.8
8.3 | 900 7
80 1 | 11.03
4.99
10.60 | 793
793 | 34.9 | 7.86
7.39
7.36 | 1561
1364
1368 | 2.03
1.64
26.1 | 006
01
047 | 2.00018
2.00018
2.00018 | 2.0000
2.0000
2.0000 | C0081 | 0.0001
0.0001 | 0.001
0.001 | 0.03
0.06
0.39 | 0.000 | 0001
0004 | 5.0000
5.0000
5.0000 | 2.000
2.000
2.000 | 81 000
81 013 | 0.0000
0.0000
0.0000 | 6002
6001 | 2.00
2.00
2.00 | | 881
881 | 2 2 | 21 | | | | | Eart 17
Eart 18
Eart 19 | - No. | 6.2
8.8
12.4 | 87
967 | 11.0F | 764
813
1008 | 964
964 | 7.00
7.07
7.00 | 79.2
69.2
101.6 | 3.64
5.01
1.3 | 018
018 | 5.00018
5.00018
5.00018 | 2.0000
2.0000
2.0000 | 0.00001
0.00001 | 0.008
0.0001
0.0001 | 0.001 | 108
108
162 | 5.000
0.0000 | 0002
0002
0002 | 5.0000
5.0000
5.0000 | 0.0000
0.0000
0.0000 | 01 000
01 000 | 0-0000Y
0-0000Y | 0002
0003 | 101
101 | | 100 | 27 | - 07
- 07 | 2 1 | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Mean | | 620
21.70
12.08 | 020
10820
8340 | 15.00 | 126.70
126.70 | 33.00
566.50
71.68 | 10 | 106.60
106.60 | 6077
6077 | 001
047
009 | 0.00
0.00
0.00 | 0.00 | 000 | 0.00 | 100 | 0.01
0.00 | 100 | 500
501
500 | E00
E00 | 100
100 | 010 001
110 015
019 003 | 500
500
500 | 000
000 | 205
205
208 | 0.00
0.00
0.00 | 0.01
0.09 | 2030
7630
6288 | 010
100
018 | 100 01
800 01
260 41 | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | CG-IS | St. Dev | | 19.00
6.26
16.1 | 2023
2023 | 238
2.0 | 17.00
24.00
134 | 20.55
20.55
20.16 | 0.07
0.07 | 39.79
96.3 | 18.00
10.81
6.07 | 016
016 | 19:00
0:00
0:00010 | 19:00
0:00
0:0007 | 000
000
000000 | 0.00
0.00 | 19.00
0.00
0.001 | 1800
209
2,000 | 19-30
5-00
0-0004 | 19-00
5:00
0:002 | 100
100
10000 | 100
100
1000 | 900 1900
027 006
01 000 | 18.00
5.00
0.00001 | 9000
0001 | E00
E00 | 18.00
0.17
0.1 | 100 | 18.00 | 1900
021
01 | 200 Mg | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Dest I | - | 14
14 | 61
607 | 747
1206 | 467
3013 | 315
349 | 637 | 1992 | 477 | 0011
0011 | 1000 | 2.0000
2.0000 | 2.000000
2.0000000 | 0.000F | 0.00
0.00 | 100 | 0.000 | 2 000 E | 5.0000
5.0000 | | 1 10 | 5,000 | 5001 | | | | | | 1 | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | David
David | 2 4 | 10.1
13.6
13.9 | 732
733
343 | 7.64
7.68 | 193
138
6683 | 0112
0111 | 13 | 1892
96.8
111.8 | 275
275 | 0018
0018 | 2.00018
2.00018
2.00018 | 2.000F | 2.000000
2.0000000
2.0000000 | 0000F
0000F | 0.001
0.001
0.001 | 2.008
2.008 | 0.000E | 0.000E
0.000E | 8.0000
8.0000
8.0000 | 2.000E | 01 030
01 030
01 030 | 6-00001
6-00001 | 0002
0002 | | 2.00
2.00
2.00 | | | 27
27 | 200 H
200 H
207 H | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Dani 9
Dani 10
Dani 11 | No. | 12.8
12.3
16.6 | 101.2 | 10.80
8.87
8.17 | 384 | 296.9
215.7
315.2 | 100 | 1912
1981 | 2204
2.05
13 | 001 | 2.00019
2.00019 | 2.000F | 2.000000
2.0000000 | 0.0001
0.0001 | 0.001 | 0.00
0.02 | 0.000 | £002
£002
£001 | 8.000E | 2.000E | 61 000
61 000 | 0.00001
0.00001 | 0000
0000 | | 008
008 | | | 81
81 | 200 20
200 11 | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Eart 13
Eart 13
Eart 14 | - No. | 20.1
17.6
13.3 | 1908 | 936
1973 | 1084 | 9077
6019
6013 | 19 | 101.8
10
138 | 51
100
101 | 001
011
008 | 100m
100m
100m | 2.000F | 2.000000
2.0000000
2.0000000 | E-0001 | 0.001
0.001 | 100 | 0.000
0.000
0.000 | 1000 | 2.0000
2.0000
2.0000 | 100 | 2 0.00
2 0.00 | 6-0000
6-0000 | 0000
0000 | 101 | - 12 | 000
000
000 | 254
266 | - 11
- 11 | | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Eart 15
Eart 17 | - No. | 92
87 | 00.0
00.0 | 1544
1544 | 687.5
684.7 | 362.3
336.1 | 74
728
78 | 1933
1938
77.8 | 246 | 036 | 2.00018
2.00018 | 2.00001
2.00001 | 2.000000
2.0000000 | E-0001 | 0.001 | 000
000 | 0.000 | 0001 | 8.0000
8.0000 | 0002 | 01 000
13 000 | 0-0000Y
0-0000Y | 0004
0004 | 101 | | 4.03 | 26
20 | - 1 | 10 1 | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Monthly
Monthly | - 2 | 12.4
8.60 | 6190
1190 | 8.6
6.86 | 20130
32130 | 361
261 90 | 7.00
637 | 1114
10.00 | 500 | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 100 | 0.000
0.001 | 100 | 500 | 5.00
5.00 | 0.002
0.00
0.00 | 010 001
100 001 | 500 | 000 | 5.05
5.05 | 008 | 221 | 271
8630 | 010
010 | 100 I | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Mean
Court
St. Day | | 12.0
19.00 | 86.65
17.00 | 9.37
19.00 | 673.65
17.00 | 369 13
36.00 | 7.89
1930 | 197.00 | 12.86
18.00 | 011
1930 | 0.00
1900 | 0.00
19.00 | 0.00
19.00 | 0.00
19.00 | 100
1800 | 0.04
1900 | 100
1930 | 5.00
19.00 | 100
1900 | 100
1000 | 036 003
900 1900 | 5.00
18.00 | 000
19:00 | 5.05
5.00 | 938
1830 | 0.01
8.00 | 237.88
830 | 0.15
1900 | 200 NO | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | YR189 | Dest 1
Dest 2
Dest 2 | No. | 12.7 | 62
24 | 931
783 | 1907 | 79.2 | 18 | 79.3
128.8 | 180 | 0011 | 1000 | 2.0000
2.0000 | 2.00000
2.000000 | 100 | 0.001
0.001 | 2.00E | 2000 | E003
E001 | | | 67 600
51 600 | 0.0000
0.00000 | Ξ | Ξ | - | | | - 11 | # | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Desid
Desid | - | 11
72 | 324
1024
103 | 12.06
12.16
10.00 | 367
82
887 | 36.9
69
61.2 | 7.00
5.00 | 963
987
985 | - | 0013
0013 | 8 00018
8 00018
8 00018 | 2.0000
2.0000 | 2.000000
2.0000000 | 0.000
0.000
0.000 | 0.001
0.001 | 0.000
0.000 | 1000 | 1000 | 0.00000
0.000000
0.000000 | 2.00E | 61 600
61 600
61 600 | 0.00001
0.00001 | 6001
6001 | | 000
000 | | F | | 2 1 | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | David
David | - | 12.8
13.1
12.2 | 101
101 | 7.86
11.00 | 604
629
708 | 81
81 | 7.0
7.0
7.0 | 1114
966
1974 | 2.19
1269
73 | 0018
0088
03 | 100m | 2 00000
2 00000
2 00000 | 2.00000
2.00000
2.00000 | 2001
2001 | 100 | 0.00
0.000
0.007 | 100 | 100
100 | | 1000 | 27 000
27 000
27 000 | 2-0000
2-0000
2-0000 | | | 1 | | | i i | 7 | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Basi 10
Basi 11
Basi 12
Basi 17 | - No. | 11.6
19.8
22.1 | 101.6 | 9.64
9.61 | 70.6
109.7 | 63.1
63.2
103.7 | 7.00
7.07
8.25 | 160.3
80.3
7 | 631
61
77 | 622
622
643 | 1.000m
1.000m
1.000m | 2.0000
2.0000
2.0000 | 2.00000
2.000000
2.000000 | 0.000
0.000
0.000 | 0.001
0.001 | 536
536
542 | 2000 | 5.000
5.000
5.000 | | 2000
2000
2000 | | 0.00001
0.00001
0.00001 | 0002
0002 | 101 | 908 | - | - | - | # 1
2
2 | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | Sent Id
Sent Id
Sent ID | - | 12.8
9.3
7.9 | 1014 | 12 m
15 m | 1117
863
864 | 37.5 | 7.00
7.00
7.70 | 124.8
141
131 * | 01
187
1339 | 508
508
547 | 1000 | 1000 | 10000 | 2001
2001 | 100 | 0.04
0.08
0.09 | | 1002
1001
1001 | | | 1 000
1 100
1 100 | 1-0007
1-0007
1-0007 | 100 | 100 | | 127 | Li | | 3 | | Sec. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | East 17
East 18
East 19 | - | 11
11
10 | 91.0
91.1
91.3 | 11.0 | 75
632
662 | 67.5
67.5
78.1 | 7.00
7.00
7.00 | 68.7
72.8
104.6 | 433
381
18 | 01
017
008 | 2.000/A | 1000 | 2 000000
2 000000
00000 | 100 | 0.001 | 0.07
0.00
0.03 | 100 | 5.002
5.001
5.001 | - HOUSE | 2.00M
2.00M
2.00M | 13 518
61 538 | 0.00001 | 6007
6002 | 101 | 61
61 | 107 | 1 | | # | | ## PATE 19 | | Min
blax
Mean | | 5.80
22.10
13.36 | 2640
10840
8646 | 13.00
13.00 | 34.70
111.70 | 20160
20160 | 5.00
7.00 | 7.00
190.90
ME 73 | 0.10
124.60
13.33 | 002
047
033 | 030
030
630 | 0.00 | 0.00
0.00 | 0.00
0.00 | 100 | 0.01
0.30 | 100
101
100 | 500
500
500 | 5.00
5.00 | 5.00
5.00 | 010 001
130 038 | 500
500
500 | 000
001 | 0.00
0.00
0.00 | 038
030
037 | 9.01
9.07 | 1336
5630 | 100 | 73.00 53
73.00 53.0 | | ## PATE 19 | LHQ-IS | Count
St. Dev
Event 1 | | 471 | 3600
23.11 | 180 | 16.00
22.36 | 17.00
36.67 | 0.85 | 18.00
62.08 | 17:00
28:01 | 1800
012
001 | 1800
030
1,000rs | 18-00
0-00
2-00000 | 0.00
0.00
0.000000 | 18.00
0.00
0.00 | 1800
5.00
0.001 | 1800
0.08
0.02 | 18:00
5:00
0:0008 | 18:00
5:00
5:001 | 18:00
5:00
0:000018 | 18.00
5.00
6.0008 | 18:00 18:00
0.28 0.08 | 500
0-00001 | 98.00
0.00
0.001 | E-00 | 1700
006
01 | 8.00
0.03 | 1646 | 1700
622
2 | 22.20 3.0
22.20 3.0 | | ## PATE 19 | | Decid
Decid | No same | | | lan. | L | 301 | - | 20.2 | | 6018 | 1000 | 1000 | 220000 | 5001 | - | 100 | 2000 | 1002 | - | 1000 | 47 000
67 000 | 2000 | | | - | | | - 11 | == | | ## PATE 19 | | Dani S
Dani S
Dani T | - No. | 93
193
138 | 24 | 5.50
7.54 | 685.6
676.2 | 300 f
371.3 | 13 | 20.1
20.8
20.8 | 2633
7.45 | 0018
0018 | 2.00018
2.00018 | 2.00001
2.00001 | 2.000000
2.0000000 | 00001
00001 | 0.001 | 2.000
2.000 | 0.000 | 2.000E | 0.00001
0.00001 | 2.000
2.000 | 61
000
61 000 | 0-0000Y
0-0000Y | 0000 | | 61 | | | 01
01 | | | ## PATE 19 | | Eart 10
Eart 10 | | 13.1
12.4
16.1 | 100.0 | 10.00
10.31
7.8 | 3606 | 263.3
267.6
267 | 7.86
7.89
7.60 | 101.7
63.5
54.9 | 100 | 018
008
008 | 2.00012
2.00012
2.00012 | 1000 | 2.000000
2.000000
2.000000 | 20001
20001 | 0.001 | 0.000
0.00
0.000 | 0.000
0.000
0.000 | 5.000
5.017
5.008 | 0.00000
0.000000
0.000000 | 0.000E | 61 560
61 600
61 600 | 0.00001 | 5000
5000
5000 | | 008
008
008 | E | E | | | | ## PATE 19 | | Bank 13
Bank 13
Bank 14 | - 1 | 18.8
17.1
12.6 | M3 | 74
640
740 | 1004 | 300.3
201.6
201.6 | 7.0
77
7.07 | 791
6
327 | 51
50
38 | 500
513
500 | 1000 | 1000 | 10000 | 6001
6001 | | 010
008
010 | Ī | 100
100
1000 | Ē | 100 | 11 500
11 500
11 600 | Ē | Ē | 10 | Ē | 3-D
5000 | 20
20
20 | - 1 | | | ## PATE 19 | | East 15
East 17 | - | 92
92 | # | 102
102
1020 | 522
3764
811 | 363.2
366 | 730
736
737 | 402
1088
597 | 1727
1323
437 | 007
038
009 | 10000
10000
10000 | 1000 | 2.00000
2.00000
2.00000 | 230
230 | 200 | 0.04
0.19
0.06 | 1000 | 5007
5013
0008 | | 0008
0002 | 01 000
01 000
1 000 | 2-000
2-000
2-000 | 500
500
500 | 10 | 1 | 325 | 2 | - 1 | - | | | | Report 18
Mars
Mars | - 2 | 12.1
9.00
13.4 | 000
000 | 8.71
8.71
9.94 | 529
529
530 | 386.2
363.20
gas so | 7.88
7.77
6.90 | 32
4120 | 173
168
100 | 014
007
001 | 1.000m
1.000m
0.00 | 0.00
0.00 | 0.000 | 0.00
0.00
0.00 | 0.001
0.001 | 0.07
0.01
0.01 | 100
100 | 5000
5000
500 | 100
100 | 0000
0000
0000 | 01 000
010 001
200 *** | 0-00001
0-00001
0-000 | 000 | 5.05
5.05 | 900 | 3.00
3.00 | 200
200
200 M | 0.10
0.10
20** | 104 AV | | | | Mean
Count
St. Dev | | 12.32
16.00
3.00 | 73.45
16.00
36.84 | 15.00
16.00 | 14.00 | 367 66
16.00
66.62 | 7.73
1600
0.36 | 45.94
16.00 | 1321
1500
2127 | 0.10
1800
0.12 | 0.00
18:00
0.00 | 18.00 | 0.00
18.00
0.00 | 0.00
18.00 | 1800 | 1800
1800 | 100
1800
100 | 1602
1800
502 | 1800
1800 | 100
1600 | 028 001
1800 1800
048 002 | 18.00 | 900
900 | E05
E00 | 1800 | 5.00
5.00 | 279.68
830
1360 | 1800
048 | 30 M 60
1800 W | | | YR2RS | David
David
David | No.
No.
No servole | 16.3 | 716 | 932
726 | 1064 | 89.2
79.3 | 13 | 763 | 3.28
2.29 | 0013 | 2.00018
2.00018 | 6 0000H | 2.00000
2.000000 | E-0001 | 0.001 | 100 | 0.0000 | E 003 | 0.00001
0.00001 | 2.00E | 01 000
01 000 | 6-3000Y | 6001 | | 0.00 | | | 01
01 | 3 4 | | | | Desid
Desid | - No. | 8.1
10.2 | 8536
862
863 | 1126 | 1052
50
60 | 35.6
55
63.5 | 7.00 | 132.6
258.3 | 1621 | 0018
0018 | 2.000 to
2.000 to
2.000 to | 6 00001
6 00001 | 2.00000
2.000000
2.000000 | 0.0001
0.0001 | 0.001 | 100 | 0.000 | 2 000E | - | 1000 | 01 000
01 000
01 000 | 6-3000Y
6-3000Y | 0001
0001 | | | | | 01
01 | - | | | | Dani II
Dani II
Dani II | - | 13.4
12.8
12.3 | 103 | 7.84
10.87
9.84 | 1316 | 87
821
833 | 127
747
738 | 99.5
168.1
108.6 | 7.06
8.06 | 029
022 | | 1000 | | 5 000 P | 2.00
2.00
2.00 | 200
200
200 | Ξ | 5002
5003
5003 | | 100 | | | 500 | | | | | | 2 1 | | | | Seni II
Seni II
Seni II | 2 | 19.8
22.8
20.9 | 101.8 | 8.79
8.79 | 768 | 105
107.4 | 7.00 | 110 | 107
51 | 0.1
003
0018 | 8 00018
8 00018
8 00018 | 2.000V | 2.00000
2.00000
2.000000 | 0.000
0.000
0.000 | 0.001
0.001 | 0.00
0.02 | 0.000
0.000 | 5.000
5.000 | 0.00001
0.00001 | 2.000
2.000
2.000 | 61 600
61 600
61 600 | 0.00001
0.00001 | 6007
6007 | 02 | 008
008 | 200 | - | | 1 1 | | | | Earth 14
Earth 15
Earth 15 | - | 12 | #2
#2 | 100 | 100
847
969 | 38.2 | 7.0 | 972
1964 | 189 | 000
000
040 | 1000 | 1000 | 2.00000
2.000000
2.000000 | 2000
2000
2000 | 281 | 000
000
020 | 2.000 | E001
E003 | | 1001 | 61 C00
61 C00 | - | 5002 | 101 | - | 336 | ä | | - | | | | Erent 18
Brant 19
Min | - | 92
165
180 | 673
864
6420 | 9.14
9.16 | 10
100
100 | 10.4
80
36.20 | 74
7.88
7.10 | 883
927
16.00 | 5.00
18
5.00 | 017
006
001 | 2.00018
2.00018
0.00 | 2.000F | 2.000000
2.0000000
0.000 | 0.0001
0.0001 | 0.007
0.007
0.000 | 000
004
001 | 5.001
5.00 | E002
E001 | 0.000FE | 0001
1300
100 | 61 000
61 000
610 001 | 5.0000
5.0000 | 500 | 2.08
2.08 | 61
008 | 9.00 | 34
34
2138 | 01
01
010 | 100 11
10 11 | | March Marc | | Mean
Count | | 22.80
12.38
18.00 | 108.20
88.81
36.00 | 10.00 | 121.60
51.00 | 07.60
60.09
17.00 | 7.75
1730 | 268.30
108.71
17.60 | 1621
626
1700 | 0.05
0.10
18.00 | 0:30
0:30
18:00 | 0.00 | 0.00
0.00
18.00 | 0.00
0.00
18.00 | 100
100 | 039
006
1600 | 100
100
1800 | E 00
E 00 | E 00
E 00
18.00 | E00
E00
1830 | 010 000
010 001
9600 1600 | 500
500
1800 | 001
000
900 | 0.30
0.07
8.00 | 0.10
0.06
18.00 | 0.06
0.01
8.00 | 6130
3575
830 | 700
048
1800 | 1000 00
1017 17
1800 W | | March Marc | 990-6 | St. Day
Event 1
Event 2 | No flow | 8.30 | 15.86 | 2.80 | 21.09 | 26.93 | 0.39 | 10.38 | 479 | 012 | 0.30 | 0.00 | 0.00 | 0.00 | 100 | 0.07 | 5.00 | 5.00 | 5.00 | 5.00 | 000 001 | 5.00 | 5.00 | 0.08 | 632 | 5.02 | 1281 | 140 | 3132 31 | | March Marc | | Desil
Desil | - No. | 12.4
8.6
8.8 | 614
962 | 12.00 | 108
108
172 | 963
130 | 7.0
7.00
7.00 | 1933
53.1
128.7 | 1.0 | 2.00019
2.00019
2.00019 | 2.000 to
2.000 to
2.000 to | 6 00001
6 00001 | 2.00000
2.00000
2.000000 | 0.0001
0.0001 | 0.001 | 100 | 0.000 | 2 000E | - | 1000 | 61 000
61 000 | 6-3000Y
6-3000Y | 0001
0001 | | 600
61 | | | 01
01 | | | March Marc | | David
David | - | 164
162 | 73
733 | 7.66 | 1678
638 | 117.6
106.9 | 7.00
7.70 | 1011 | E 00
10 E 10 | 122 | 1000 | 2.0000
2.0000 | 2.000000
2.0000000 | 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 200 | 026
540 | 0.000 | 5011
5011 | 0.00000
0.000000 | | 1 10 | 5-0000
5-0000 | 6002
6002 | | - | | | | | | March Marc | | Eart 10
Eart 11
Eart 12 | No.
No.
No few | 20 | 677 | 1.00 | 600 | 93.7
67.3 | 7.66 | 1043 | | 03 | 2.00018
2.00019 | 2.00001
2.00001 | 0.000000 | 0.0001 | 0.001 | 112 | 0.000 | 5.000
5.000 | 0.00001 | 0.000E | 61 600 | 6-0000Y | 0007 | | 028 | | | 87 | 20 1 | | March Marc | | Eart 13
Eart 14
Eart 15 | No fee | 128 | 800 | 931 | 1959 | 125.6 | 7.67
7.29 | 03.8
73.6 | ÷ | 018
011 | 1.00019
1.00019 | 2.00001
2.00001 | 2.000000
2.000000 | 6-0001
6-0001 | 0.001 | 0.07
0.08 | 0.000 | 5.001
5.000 | 0.00000
0.000000 | 1000
1000 | 01 000 | 0.00001 | 5001 | 5.00 | 000 | | | 47 | 2 1 | | March Marc | | Eart 15
Eart 17
Eart 18 | No. | 7.8
7.8 | 80
80
80 | 10.30 | 126
126 | 82.8
83.8
905.3 | 7.00
7.00 | 136
82.6
66.8 | 20.87
5.16
6.62 | 079
04 | 2.000 to
2.000 to
2.000 to | 6 00001
6 00001 | 2,000000
2,000000
2,0000000 | 60001
60001 | 0.001 | 622
638 | 1000 | 5.007
5.002
5.001 | - | 1003
1003 | 61 000
61 000
61 000 | 0.000 | 6003
6003 | 101 | 000 | 100 | - | 01
01 | 7 1 | | March Marc | | Min
Max
Mean | | 7.80
20.80 | 4630
10240 | 6.92
12.09 | 63.80
172.00 | 6730
0140 | 6.00
8.17 | 53.10
233.60 | 1.00
124.60 | 000
173 | 000
030 | 030 | 0.00 | 0.00
0.00 | 100 | 001
072 | 5.00
5.01 | 5.00
5.00 | 500
500 | 100
100 | 010 001
500 008 | 500
501 | 500
501 | 508
508 | 038
010 | 021
004 | 9130
9930 | 010
500 | 100 E1 | | March Marc | 18-84 | Count
St. Day | | 15.00
3.62
12.8 | 1400
1708 | 18.00
2.67
9.89 | 14.00
33.00
21.1 | 16.00
16.67
16.2 | 1930
031
7.60 | 15.00
65.02
80.1 | 14.00
32.88
6.07 | 963
661 | 19.00 | 0.00 | 0.00 | 15.00
0.00
0.00 | 15.00
5.00 | 1500
025
043 | 10.00 | 10:00
5:01
5:00 | 100 | 1000 | 127 001
0.7 001 | 15.00
5.00 | 10.00
0.00 | E00
E00 | 18.00
0.01 | 0.02 | 600
276 | 127 | 037 12
63 1 | | March Marc | | Emil
Emil
Emil | No Service
No Service | - 13
- 6.1 | N
83 | 12 | 20.00 | 93 | 7.00 | 163
674 | ő | 0011 | 2.0001E | £ 200001 | 220000 | 6081 | 0.001 | 1000 | 0.000 | E001 | 0.00000
0.000000 | 2300E | 11 000
01 001 | 6-00001 | 5001 | | - 11 | | | 61 | 2 1 | | March Marc | | Dani S
Dani S
Dani T | - | 14
14
164 | 100.0
100.0 | 13.01
11.00
11.03 | 27
04
129 | 29.8
62.8 | 18 | 1803
2338
954 | 63
101 | 0011
0011 | 2.00018
2.00018
2.00018 | 2.0000
2.0000
2.0000 | 2.00000
2.00000
2.000000 | 6001
6001 | 0.001
0.001 | 2.000
2.000 | 0.0000
0.0000
0.0000 | 2.000E | 0.00000
0.00000
0.000000 | 2008
2008 | 61 600
61 600 | 0-00001
0-00001 | 5001
5001 | | 000
000 | | | - 27 | 2 1 | | March Marc | | Dani S
Dani S
Dani S | No. | 9.5
12 | - 111 | 10 er
7.60 | 218 | 38.1
32 | 72
73
746 | 190.8
66.6 | 200 | 008 | 2.00018
2.00018 | 2.00001
2.00001 | 2.000000
2.0000000 | C-0001 | 0.001 | 2.000
2.000 | 0.000 | E000
E000 | 0.00001
0.00001 | 2.000
2.000 | 61 000
61 000 | 0-0000Y
0-0000Y | 0007 | | 000 | | | 07
07 | - | | March Marc | | Eart 12
Eart 13 | No. | 193 | 102.3 | 5.57
5.57 | 123 | 65.7
26 |
7.2%
7.7 | 108.6 | 10 | 0011 | 2.00018
2.00018 | 2.00001
2.00001 | 2.000000
2.0000000 | C-0001 | 0.001 | 007 | 0.000 | 1000
1000 | 0.00001
0.00001 | 2.000
2.000 | 7 0-009 | 0-0000Y
0-0000Y | 000T | 101 | 000
51 | 0.02 | - | 01
01 | | | March Marc | | East 15
East 15
East 17 | - | 17 | 83
83
83 | 6.27
11.20
12.4 | 227
213
638 | 16.7
16.6
26.3 | 7.00
6.00
7.34 | 126.3
112.6
66.1 | 1.0 | 6611
668
663 | 1.00011
1.00011 | 2 MARCH | 2.00002
2.00002
2.00002 | 2000
2000
2000 | 0.801 | 0.04
0.05
0.05 | 1000 | 100
100
100 | 0.00001
0.00001 | 2.00E | 61 062
61 063
56 00* | 0.00001 | 6001
6001 | 100 | 000
000
000 | 10 | Ħ | | # | | March Marc | | Earth 18
Earth 19
Min | - | 83
162
600 | 98.7
106.8
45.30 | 9.85
9.27 | 37.6
38.7
26.00 | 28.6
32.2
9.30 | 7.00
7.00
6.86 | 733
893
1680 | 3.77
1.7
431 | 011
0011
001 | 2.00018
2.00018
0.00 | 2.0000
2.0000
0.00 | 2.000002
2.000002
0.00 | 0.0001
0.0001 | 0.001 | 01
01
001 | 100 | 5.000
5.000
5.000 | 100 | 1000
1000
100 | 61 000
61 000
610 001 | 0-00001
0-00001 | 5002
5007
500 | 2.01
2.01 | 61
000
000 | 206 | 10
1
430 | 01
01
010 | 71 A1 | | March Marc | | Mean
Count | | 19.30 | 111.00
82.14
16.00 | 10.78
10.29
18.00 | 12.00
32.37
16.00 | 20.70
20.90
96.00 | 8.80
7.61
1830 | 233.90
108.61
18.00 | 134
134
1750 | 011
003
9630 | 0.00
0.00
18.00 | 0.00
0.00
18.00 | 0.00
0.00
18.00 | 0.00
0.00
18.00 | 100
100
1800 | 0.10
0.03
18.00 | 100
100
1830 | 500
500
1800 | 5.00
5.00
18.00 | 5.00
5.00
18.00 | 700 005
006 001
1600 1600 | 500
500
1800 | 5.00
9.00
98.00 | 5.05
5.05
8.00 | 014
014
1800 | 0.06
0.02
8.00 | 1343
5343
836 | 0.10
0.10
19.00 | 7100 40
2106 54
1800 18 | | Mail | YK-19 (D/9) | St. Dev
Event I
Event 2 | No. | 132
133 | 11.0
H.1 | 232
336
7,42 | 12.13
369
29 | 1032
284
203 | 78 | 1278
1214
1878 | 140
6.0
8.1 | 003
036
0018 | 0.00
1.00019
1.00019 | 0.00
1.0000
4.0000 | 0.00
1.000000
1.0000000 | 0.00 | 0.00
0.00
0.00 | 0.03
0.30
0.30 | 100 | 100
1000
1000 | 100 | 100 | 143 001
02 000 | 200
2000
2000 | 5.00
0.00
0.00 | E-00 | 928
938
92 | 10 | 17.07 | 2 | 20 1 | | Mail | | Emil
Emil
Emil | No. | 27
28
24
74 | 96.4
91.8 | 12.79
11.6
11.6 | 36
308
38
314 | 22
18.2
22
21.1 | 6.00 | 66
1724
234.4 | 1000 | 6011
6011
6711 | 1.0000
1.00000
1.00000 | 1000 | 100000 | 2001
2001 | 0.001
0.001 | 0.000
0.000
0.000 | 2.000
2.000
2.000 | 100 | | 1000 | 61 668
61 688 | 0.00001
0.00001 | 5001
5001
5001 | | 008
008
008 | | | | - | | Mail | | Emil
Emil
Emil | - | 9.5
11.4
13.4 | 917 | 7.84
7.44
15.00 | 261
264
266 | 203
212
218 | 728
637
64 | 108.6
118
179 | 6
108
107 | 000
000
000 | 1000 | 1000 | | 0.000
0.000
0.000
0.000 | 201 | 1 000
1 000
1 000 | | 100 | | | 1 50 | 1-0007
1-0007 | Ē | | | | | | 7 | | Mail | | East 10
East 11
East 13 | - No. | 10.2
10.6
13.2 | 101.1
100.1 | 8.78
8.82
9.34 | 267 | 20.3
20.2
22.4 | 12
12
21 | 1212
1212 | 632
2622 | 028
042
028 | 1000 | 2 AND 1 | 10000 | 6001
6001 | 100 | 0.23
0.07
0.27 | j | 100
100
100 | | 1000 | 61 001
61 007 | 1000 | | | | 200 | Ė | - | - | | Mail | | Eart 13
Eart 14
Eart 15 | - | 128
82
78 | 11.0 | | 36 | 20.8
23.8
22.7 | 7.66
7.66 | | | 026
027
036 | 2.00018
2.00018
2.00018 | 2.0000
2.0000
2.0000 | \$40000
\$40000
\$40000 | 0.0001
0.0001 | 0.001
0.001 | 031
037
031 | 0.000
0.000
0.000 | 5.000
5.000
5.000 | - | 2.00E | 01 000
01 000 | 0.0000
0.0000
0.0000 | 0001
0001 | 2.00
2.00 | 20
000 | 10 | ÷ | - 11 | - | | Mail | | East 15
East 17
East 15 | No. | 1 02 | ÷ | 1136
1136
1030 | 20.0
20.0
20.0 | 774
217 | 610
672
726 | 1333
1664
1068 | 12
10
10 | 030
030
038 | 1000 | 1000 | 100000
100000
100000 | 0.000
0.0001 | | 027
026
026 | | 100
100 | | 5.001
5.000
5.000 | 11 000
11 000
11 000 | 1000 | 5000 | 100 | 1 | 100 | Ħ | | - | | Mail | | Min
blax
Mean | | 100
11.00 | 66 80
101 10
86 44 | 5.31
12.79 | 24.70
36.60 | 17.60
28.60
20.60 | 6.00
8.30
7.70 | | 400
0040
1149 | 042
042
03* | 000
030
500 | 0.00
0.00
0.00 | 0.00 | 0.00
0.01 | | 0.01
0.07
0.07 | 100
100
100 | 500
501
502 | 100
100
100 | 100
100
100 | 010 001
800 017
073 AF | 500
500
544 | 5.00
5.00
5.00 | 505
505
507 | 008
028
027 | 9.01
9.04
9.0* | 100 | 030
200
025 | 100 ES | | Mail | N29-19 | Count
St. Day | | 19.00
3.00
13.4 | 1700
1471
913 | 1800
180
2,14 | 17.00
3.36
53.4 | 2.62
41.4 | 1900
0.86
7.30 | 19.00
47.11
106.1 | 19.00
12.13 | 99.00
0.15
0.14 | 19:00
0:00
1:000/4 | 0.00 | 19.00
0.00
1.000007 | 18.00
0.00
0.001 | 1900
5.00
0.801 | 1800
6.18
6.21 | 19.00 | 19:30
5:00
5:005 | 19:30
5:00
0:00001 | 19:00
5:00
5:000 | 206 006
206 006 | 19.00
5.00
0.0007 | 900
000 | E-00
E-00 | 19.00
0.04
0.04 | 8.00
0.01 | 381 | 947
247 | 100 NO
107 D | | | | Eart 2
Eart 3
Eart 3 | - N | 192
53
67 | 102
103
104 | 7,80
10,27
10,28 | 30
30
304 | 36
26
26.6 | 100
630
647 | 128.6
128.6 | 107 | 601
601
601 | 1000 | 1000 | 1000 | 6001
6001 | | | Ī | 100 | Ē | 100 | 61 000
61 000 | Ē | Œ | | Ē | E | Ė | - 1 | 8 1 | | | | East I
Dest I
Dest I | - | 82
81
97 | - | 10.00
10.00
7.84 | 2 | 29
277
262 | 740
640 | 1942
1978 | 7.68
6.18
2.66 | 0018
0018
0018 | 1000 | 1000 | 100000 | 2001
2001 | | 100 | | | | 100 | 1 20
1 20
1 20
1 20 | 1000 | E | | | | | | - | | | | Eart S
Eart S
Eart S | - 2 | H | 161 | 10.01
2.01
2.11 | 36 | 26.6
27
23.4 | 61
62
67 | 100 | 27
4
313 | 010
017
027 | 1000 | 1000 | 10000 | 2001
2001 | 100 | 0.00
0.00
0.00 | | 100
100
100 | | | | 1-0007
1-0007
1-0007 | 500 | | | | | | 30 | | | | East 12
East 13
East 14 | - No. | 134
132
5.8 | 101.2 | 9.38
9.31
16.77 | 69.7 | 21.6
20.2
34 | 7.00
7.50
7.50 | 99.3
17
95.8 | 12
2
368 | 012
011
034 | 1.000m
1.000m
1.000m | 2.00001
2.00001 | 10000 | 0.000
0.000
0.000 | 0.001 | 0.74
0.74
0.3 | 0.000 | 100 | | | 61 000
61 000 | 0.00001
0.00001
0.00001 | 500
500
500 | 101 | 000
000
000 | 0.01
0.000
0.000 | - 1 | - | | | | | East 15
East 16
East 17 | - | 14
17
17 | 03
87
81 | 8.12
16.36 | 43.7
26.4
26.9 | 20
23
23.6 | 6.00
5.00 | 112.8
105.6
25.5 | 641
53
339 | 631
63
63 | 2.00012
2.00012
2.00012 | 1000 | 100001 | 2.00E | 0.001 | 0.18
0.21
0.26 | 2.000
2.000
2.000 | 1000
1000
1000 | 0.00001
0.00001 | 1.000
1.000 | 61 560
61 600
12 607 | 0.00001 | 6001
6001 | 101 | 001 | 100 | | | 噩 | | | | Report 18
Mars | 2 | | 602
6180 | 10
10
10 | 663
2640
2640 | 20.1
32.9
20.00 | 7.0
7.0 | 100.0
56.0
17.00 | 1.00
(2
120 | 022
019
002 | 1000 | 1000 | 0.00 | 0.001
0.001 | 100 | 0.74
0.74 | 100 | 100
100
100 | 100 | 100 | 01 000
01 001
010 001 | 500 | 500 | 100 | 21
028 | 2000
2000
2001 | 1 | 27
27
280 | - 1 | | | | Mean
Count | | 9.77
9.77
19.00 | 101 20
8423
1700 | 12.38
9.17
18.00 | 53.80
51.81
17.00 | 21.80
20.18
10.00 | 730
739
1930 | 104.00
104.00 | 5133
639
1800 | 630
613
9630 | 000
000
1900 | 0.00
0.00
19.00 | 0.00
0.00
19.00 | 0.00
0.00
19.00 | 1.00
1.00
18.00 | 822
811
1800 | 100
100
1930 | 500
500
1930 | 5.00
5.00
19.00 | 1.00
1.00
19.30 | 000 007
030 002
1900 1900 | 500
500
1800 | 5.00
5.00
96.00 | 5.05
5.05
8.00 | 020
027
1800 | 0.04
0.01
8.00 | 1700
1286
830 | 300
030
950 | 26.70 GB | | | 76-9 | St. Dev
Event I
Event 2 | No. | 328
162
104 | 1430
54 | 1.00
9.03
7.8 | 633
328
36 | 261
214 | 7.00
7.00
7.00 | 172.4
179.3 | 1121
1046
846 | 0.00
0.01
0.018 | 000
1000
1000
1 | 2.000
2.0000
2.0000 | 0.00
1.000000
1.0000000 | 0.00 | 0.00
0.00
0.00 | 0.08
0.0
0.2 | 100 | 500
5011
5001 | 100 | 100 | 0.75 0.00
0.7 0.00
0.7 0.00 | 200
2000
2000 | 5.00
0.00
0.00 | E-00 | 004
008
008 | 9.01 | 306 | 2 | 20 00 | | Marie Mari | | East I
East I
East I | - | 63
62
6 | 61.8
61.2 | 10.6
10.23
11.36 | 21
276
32 | 31
964
35 | 67
68 | 121.6
48.1
183.6 | 1077
1143 | 0011
0011
0011 | 1.000m
1.000m
1.000m | 100 | 100000 | 2001
2001 | 0.001
0.001
0.001 | 1.000
1.000
1.000 | - | | | 1000 | 1 100 | 0.00001
0.00001
0.00001 | 1 | | 100 | | | - 11 | # | | Marie Mari | | Emil
Emil
Emil | - | 193
124
17 | #72
#84 | 7.54
7.52
9.82 | 267
263
279 | 192
201
21 | 675
687 | 90.7
90.8
194.2 | 101
120
120 | 011
011
024 | 1000 | 1000 | | 0.000
0.000
0.000
0.000 | 201 | 529
529
539 | | 100 | | | 1 10 | 1-0007
1-0007 | Ē | | | | | | 30 | | | | East 10
East 11
East 13 | - No. | 163 | 96
963 |
12.00
8.20
8.94 | 203 | 212
192
214 | 100 | 90.1
96.6
62.1 | 7
747
122 | 030
038
03 | 1000 | 2 AND 1 | 10000 | 6001
6001 | 100 | 54
129 | j | 100
100
100 | | 1000 | 61 600
61 600
61 600 | 1000 | 100 | | | 257 | | - | # | | | | East 13
East 14
East 15 | 20 | 168
94
87 | ##
#7 | | 201 | 26.6
22.1
20.9 | 730
730
648 | 34
533
1238 | | 030
036
042 | 100 | 2.0000
2.0000
2.0000 | | 100 | | | Ξ | | ≣ | | 0 000
01 000
01 007 | | E | - | Ē | 200
200
182 | Ħ | | # | | | | Earth 17
Earth 17 | 2 | - 14
- 17 | 04
84 | 10.00
10.00
10.37 | 27.2
27
30.0 | 16.2
20.4 | 675
63 | 1265
1067
85 | 741
641
1142 | 038
038
048 | 2.00078
2.00078
2.00078 | 2.0000
2.0000
2.0000 | 100000
100000 | 6001
6001 | 0.001
0.001 | | 0.000
0.000
1.000 | 5.007
5.007
5.008 | - | 1000
1000 | 01 000
02 001
01 000 | 0.0000
0.0000
0.0000 | 0000
0000 | 101
101 | 600
60
61 | 9.04
9.00
9.01 | ΕĒ | i. | ÷ 🗔 | | | | Monthly
Monthly
March | - | 11.6
4.00
15.80 | 81.2
61.72
88.30 | 130
130
133 | 29.2
23.30
32.90 | 21.6
96.20
36.00 | 679
619
748 | 72.0
36.00
183.00 | 101
406
3077 | 049
049 | 000
000 | 0.00
0.00 | 0.00 | 0.00
0.00
0.00 | 100 | 0.00
0.01
0.09 | 100 | 500
500
501 | 100
100 | 100
100 | 010 001
000 011 | 500
500 | 500
001 | 505
506 | 008
028 | 9.01
9.04 | 100 | 010
200 | 100 E1 | | | W.06 | Count
St. Dev | | 19.00
3.77 | 1700
1389 | 18:00 | 2.07
2.07 | 241
14.00 | 1930
0.86 | 19.00 | 18.00
5.65 | 900
018 | 19-20
000 | 19:00 | 19.00
0.00 | 19.00 | 100 | 1800
5.76 | 19.00 | 19:30
5:00 | 19.00 | 19.00 | 100 1000
118 000 | 1800
1800 | 900
500 | 8.00
0.00 | 1800
004 | 8.00
0.01 | 830
232 | 1900
046 | 1000 No. | | Design by 172 744 289 747 20 9 034 20001 00001 0001 0001 0001 0001 0001 0 | | fact
fact
fact | - | 127
24
25 | 71.4
60
96.3 | 7.68
10.66
12.63 | 31
31
31
269 | 24
18
18 1 | 7.56
6.73
6.98 | 138.8
128.8
46.2 | 8.27
20.28 | 6011
6011
6011 | 1.00011
1.00011 | 2 MARCH | 100000 | 2000
2000
2000 | 0.801 | 0.00
0.000
0.000 | 1000 | 100 | 0.00001
0.00001 | 2.00E | | 0.00001 | 6001
6001 | | 00E | | | | - | | Design by 172 744 289 747 20 9 034 20001 00001 0001 0001 0001 0001 0001 0 | | Earth
Senis
Senis | - 1 | 64
104
117 | 11.3
20.8 | 10.00
10.20
7.69 | 30
303
362 | 21
22
34 14 1 | 739
679 | 1924
1924 | 241
241 | - | 1000 | 1000 | 1000 | 6001
6001 | | 100
100
110 | Ī | Ī | Ē | 100 | 1 100 | Ē | Œ | | Ē | E | Ė | - 1 | 2 | | Design by 172 744 289 747 20 9 034 20001 00001 0001 0001 0001 0001 0001 0 | | David
David
David | 20 | 14
151 | #1 | 736
193
676 | 28 | 22.1
22.6 | 12 | 99.1
1632
738 | 7.65
826
10 | 018
030
038 | 1007 | 1000 | 100000
100000
100000 | 0.000
0.000
0.000 | | 0.07
0.76
0.21 | 100 | 100
100
100 | | 100 | 01 000
01 000
01 001 | 1000 | 500 | | = | | | i i | # 1 | | 1 | | Bank G
Bank G
Bank G | - | 177
178 | 1013
1013 | 7.65
11 | 263 | 20.7
20.7
20.9 | 65
638
7.0 | 165
165
20 | 120
700
0 | 038
038
038 | 100m | 100 | 100000 | 2000
2000
2000 | 0.001
0.001 | 100
141
137
137 | 2000
2000
2000 | | | 1000 | 1 000
1 000 | 0.00001
0.00001
0.00001 | 5001
5001 | 2.01
2.01
3.07 | 10
11 | 100 | - 1 | | # | | ## 1 | | Dani II
Dani II
Dani II | - | 92
92
92
23 | 04
87
84 | 162
1627
1527 | 294
274
274
288 | 20.1
20.1
20.4 | 60
62 | 100 | 7.65
7.65
7.37
1.37 | 047
036
036 | 1 000 TE | 2 March | 100000 | | 0.001
0.001
0.001 | 041
028
023 | | 500
500
500
500 | | 100 | 61 600
61 600
61 607 | 0.00001
0.00001
0.00001 | | 100 | | 100 | E | | # | | ## 15 15 15 15 15 15 15 15 | | East 18
East 18
Min | - | 340 | E140 | 10.31
8.27
8.62 | 29.7
27.8
23.90 | 20.6
23.1
16.60 | 623
630
630 | 20
20 M | 20.13
21.8
2.61 | 071
089
669 | 1000 | 1000 | 0.00 | 100
100 | 100 | 047
043
081 | 100 | 5.00°
5.00°
5.00 | 100 | 100
100
100 | 61 000
61 001
610 001 | 1 000
1 000 | 0000
0000
0000 | 100 | 61
038 | 941 | 100 | 41
41
410 | | | | | Mean
Count | | 15.00
15.00
19.00 | 101 30
8525
1700 | 9.13
9.13
19.00 | 32.00
28.18
17.00 | 20.50
20.54
90.00
57* | 575
677
1936
A | 100.00
100.34
10.00 | 20 13
8 50
18 50 | 0.71
0.28
96.00 | 0.00
0.00
19.00 | 0.00
0.00
19-00 | 0.00
0.00
19.00 | 0.00
0.00
18:00 | 100
100
100 | 536
536
1600 | 100
100
1930 | 501
501
1930 | 100
100
100
100 | 100
100
100
100 | 041 042
940 1930
138 | 500
500
1900 | 100
100
100 | 0.05
0.05
8.00 | 0.10
0.06
19.00 | 5.07
5.02
8.00 | 713
830 | 0.10
0.10
10.00 | 200 10
200 10
200 10 | | | ited on half the I init of seconds | an and | | | 12.77 | | | | | 11.0 | 8.07 | est. | | | - mil | | | end | | | | -81 | - 000 | | and a | and | | | | | | # **APPENDIX B OBSERVATIONS AND FIELD DATA** | | - /) = [| 7 | | | | to hir | | | | | |----------------|-------------|----------------------|--------------------|-------------------------|---------------------------|---|-------------------------|------|--|--------------------| | J13 Pre-constr | ruction WQM | Grease/oil/
sheen | Temperature
(℃) | Dissolved
Oxygen (%) | Dissolved
Oxygen (ppm) | Specific
Conductivity
(SPC uS/cm) | Conductivity
(uS/cm) | рН | Oxidation
Reduction
Potential (mV) | Turbidity
(NTU) | | | Month | 20 | 12.3 | 94.0 | 9.43 | 100.5 | 76.1 | 7.87 | 92.4 | (.6 | | WC-RS | Comment | Clea | r, me | deum | flon | / | | | | | | | Month | 20 | 12.4 | 94.7 | 9.48 | 100.5 | 76.3 | 7.82 | 101.6 | 1.3 | | wc-is | Comment | Clea | m | | n Ca | st C | | | | | | | Month | NO | 12.4 | 96.1 | 9.60 | 481.4 | 366.0 | 7.82 | 111.4 | 0.0 | | CG-IS | Comment | | | | * | a+10 | ~ , sl. | ight | E(0~ | Ç4 | | | Month | 14.3 | 95.3 | 9-15 | 98.2 | | 7.97 | 104 | 104.5 | 1.8 | | YR1-RS | Comment | | 14.3 | 95.3 | 9.15 | 98.2
Past | 78/1 | 7.92 | | | -- 3/ 5/ 9 | 22-013 Pre-cons | truction WQM | Grease/oil/
sheen | Temperature
(°C) | Dissolved
Oxygen (%) | Dissolved
Oxygen (ppm) | Specific
Conductivity
(SPC uS/cm) | Conductivity
(uS/cm) | рН | Oxidation
Reduction
Potential (mV) | Turbidity
(NTU) | |-----------------|--------------|----------------------|-----------------------|-------------------------|---------------------------|---|-------------------------|------|--|--------------------| | | Month | NO | 12.1 | 86.5 | 8.71 | 529 | 398.2 | 7.77 | 3.3 | (6.8 | | LHG-IS | Comment | | | | | | egeto | | | | | | | | | | | | | | | | | | Month | 20 | 14.6 | 95.6 | 9.14 | 99.9 | 80-0 | 7.88 | 92.7 | 1.9 | | YR2-RS | Comment | Fast | Flor | ~ , n | ned in | m le | re(| | | | | | Month | NO | 13.9 | 94.0 | 9.13 | 139.8 | 1101 | 7.69 | 83.4 | 2.7 | | ssc-Is | Comment | low | | | | | i flo | | ĊS | | | | Month | NO | 16.2 | 105.8 | 9.85 | 38.7 | 32.2 | 7.59 | 89,5 | 1.7 | | TR-RS | Comment | | | | | | 010000 | | | | | | Month | 10-6 | 92.8 | 9-17 | 32.9 | 23.8 | 7.07 | 7.07 | 113.9 | 9.9 | | YK-IS (D/S) | Comment | Slig | 92.8
10.6
Jut + | | | | 23.8
Flov | | | | | | 2 | 8+n Se | eptem | ber: | Sum | 1 cle | ar sh | cies, | wan | ~ | |------------------|-------------|----------------------|---------------------|-------------------------|---------------------------|---|-------------------------|-------|--|--------------------| | 22-013 Pre-const | ruction WQM | Grease/oil/
sheen | Temperature
(°C) | Dissolved
Oxygen (%) | Dissolved
Oxygen (ppm) | Specific
Conductivity
(SPC uS/cm) | Conductivity
(uS/cm) | рН | Oxidation
Reduction
Potential (mV) | Turbidity
(NTU) | | 1 | Month | 20 | 9.7 | 90.2 | 9.13 | 46.5 | 32.9 | 7.61 | 56.6 | 4.7 | | NZG-IS | Comment | | mal 1 | | flow | | n ba. | ~K | | | | | Month | 20 | 11.4 | 91.2 | 8.82 | 29.2 | 21.6 | 6.76 | 72.5 | 10.1 | | YK-IS | Comment | depo | osits | of n | | paqi | | · S | | | | | Month | 20 | 16.0 | 95.0 | 8.27 | 27.8 | 23.1 | 6.62 | 85.9 | 21.8 | | YK-RS | Comment | | sid I | | s in | , | | | a | | ## **APPENDIX C LABORATORY CERTIFICATES** Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### NGH Environmental 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 1 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order # Date Analysis Commenced 29-September-2023 |
it ID. <u>Test</u>
ime sample taken | Result | (units) | Method Reference | Limit of
Reporting | |--|-----------|---------|-----------------------------|-----------------------| | C-RS
19.23 12.43pm | | | | | | Aluminium (dissolved) | 0.04 | mg/L | APHA 3030 B/3120 B | 0.03 | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | Cadmium (dissolved) | < 0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | Calcium
(dissolved) | 13.5 | mg/L | APHA 3030 B/3120 B | 2 | | Chromium (dissolved) | 0.004 | mg/L | APHA 3030 B/3120 B | 0.0000 | | Copper (dissolved) | < 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | Cyanide | < 0.002 | mg/L | * APHA 4500-CN E | 0.002 | | Total Hardness as CaCO3 | 43 | mg/L | LTM-W-038 | 2 | | Iron (dissolved) | 0.02 | mg/L | APHA 3030 B/3120 B | 0.01 | | Lead (dissolved) | < 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | Magnesium (dissolved) | 2.16 | mg/L | APHA 3030 B/3120 B | 2 | | Manganese (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.001 | | Mercury (dissolved) | < 0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | Nickel (dissolved) | < 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | Phosphorus, Total | 0.04 | mg/L | LTM-W-030 | 0.01 | | Silver (dissolved) | < 0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | Total Dissolved Solids | 6 | mg/L | LTM-W-035 | 2 | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 NATA NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing #### **NGH Environmental** 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 2 of 17 For all enquiries related to this report please quote document number: 2309-0088 <u>Facility:</u> <u>Order #</u> <u>Date Analysis Commenced</u> 29-September-2023 | | | | | _, ~, p., | | |------------|--|-----------|---------|-----------------------------|-----------------------| | EAL ID | Client ID. Test Date/Time sample taken | Result | (units) | Method Reference | Limit of
Reporting | | 23Sep-0252 | WC-RS
27.09.23 12.43pm | | | | | | | Total Suspended Solids | 2 | mg/L | APHA 2540 D | 0.2 | | | Zinc (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0253 | WC-IS
27.09.23 12.52pm | | | | | | | Aluminium (dissolved) | 0.04 | mg/L | APHA 3030 B/3120 B | 0.03 | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | Cadmium (dissolved) | < 0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | Calcium (dissolved) | 13.3 | mg/L | APHA 3030 B/3120 B | 2 | | | Chromium (dissolved) | 0.003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | Copper (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | Cyanide | <0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | Total Hardness as CaCO3 | 42 | mg/L | LTM-W-038 | 2 | | | Iron (dissolved) | 0.02 | mg/L | APHA 3030 B/3120 B | 0.01 | | | Lead (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | Magnesium (dissolved) | 2.13 | mg/L | APHA 3030 B/3120 B | 2 | | | Manganese (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.001 | | | Mercury (dissolved) | < 0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | Nickel (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | | | | | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal NGH Environmental Tuesday, November 14, 2023 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 3 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order # Date Analysis Commenced 29-September-2023 | EAL ID | Client ID. Date/Time sample t | <u>Test</u>
aken | Result | (units) | Method Reference | Limit of
Reporting | |------------|--|-------------------------------|----------|---------|----------------------|-----------------------| | 23Sep-0253 | WC-IS 27.09.23 12.52pn | n | | | | | | | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Phosphorus, Total | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | <0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | 15 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | < 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0254 | CG-IS 27.09.23 1.08pm | | | | | | | | | Aluminium (dissolved) | 0.06 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | <0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | 99.1 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | 0.003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Copper (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | < 0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | | Total Hardness as CaCO3 | 271 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | <0.01 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | Lead (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | 5.63 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | <0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal NGH Environmental Tuesday, November 14, 2023 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 4 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order # Date Analysis Commenced 29-September-2023 | EAL ID | Client ID. Date/Time sample | <u>Test</u>
taken | Result | (units) | Method Reference | Limit of
Reporting | |------------|-------------------------------|-------------------------------|-----------|---------|-----------------------------|-----------------------| | 23Sep-0254 | CG-IS 27.09.23 1.08pm | | | | | | | | - | Nickel (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Phosphorus, Total | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | < 0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | 155 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | 0.004 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0255 | YR1-RS 27.09.23 1.18pm | | | | | | | | | Aluminium (dissolved) | 0.06 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | <0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | 13.3 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Copper (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | <0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | | Total Hardness as CaCO3 | 42 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | 0.03 | mg/L | APHA 3030 B/3120 B | 0.01 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### NGH Environmental 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 5 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order # Date Analysis Commenced 29-September-2023 | EAL ID | Client ID. Date/Time sample t | <u>Test</u>
aken | Result | (units) | Method Reference | Limit of
Reporting | |------------|--------------------------------|-------------------------------|-----------|---------|-----------------------------|-----------------------| | 23Sep-0255 | YR1-RS 27.09.23 1.18pm | | | | | | | | • | Lead (dissolved) | < 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | 2.08 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | <0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Nickel (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | 0.07 | mg/L | LTM-W-030 | 0.01 | | | | Phosphorus, Total | 0.38 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | <0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | 3 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | < 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0256 |
LHG-IS 27.09.23 1.35pm | | | | | | | | | Aluminium (dissolved) | 0.07 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | < 0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | 108 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | 0.003 | mg/L | APHA 3030 B/3120 B | 0.0000 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal **NGH Environmental** 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith **NATA Accredited Laboratory** Tuesday, November 14, 2023 Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 6 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order# **Date Analysis Commenced** 29-September-2023 | EAL ID | Client ID. Date/Time sample | <u>Test</u> | Result | (units) | Method Reference | Limit of
Reporting | |------------|-------------------------------|-------------------------------|----------|---------|-----------------------------|-----------------------| | | | arcii | | | | | | 23Sep-0256 | LHG-IS 27.09.23 1.35pm | | | | | | | | | Copper (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | <0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | | Total Hardness as CaCO3 | 296 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | 0.05 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | Lead (dissolved) | 0.005 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | 6.34 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | 0.012 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | <0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Nickel (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Phosphorus, Total | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | <0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | 144 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | 0.004 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0257 | YR2-RS
27.09.23 1.57pm | | | | | | | | 27.07.23 1.37pm | Aluminium (dissolved) | 0.06 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | | | | - | | | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### NGH Environmental 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 7 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: <u>Order #</u> <u>Date Analysis Commenced</u> 29-September-2023 | EAL ID | Client ID. | <u>Test</u> | Result | (units) | Method Reference | Limit of | |------------|-------------------------------|-------------------------------|-----------|---------|-----------------------------|-----------| | | Date/Time sample t | aken | | | | Reporting | | 23Sep-0257 | YR2-RS 27.09.23 1.57pm | | | | | | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | < 0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | 13.7 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | <0.00001 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Copper (dissolved) | < 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | < 0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | | Total Hardness as CaCO3 | 34 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | 0.04 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | Lead (dissolved) | 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | <0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Nickel (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Phosphorus, Total | 0.02 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | <0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | 10 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | < 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### **NGH Environmental** 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 8 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order# **Date Analysis Commenced** 29-September-2023 | EAL ID Client ID. Test Date/Time sample taken | Result | (units) | <u>Method Reference</u> | Limit of
Reporting | |---|-----------|---------|-----------------------------|-----------------------| | 23Sep-0258 | | | | | | Aluminium (dissolved) | 0.25 | mg/L | APHA 3030 B/3120 B | 0.03 | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | Cadmium (dissolved) | < 0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | Calcium (dissolved) | 12.9 | mg/L | APHA 3030 B/3120 B | 2 | | Chromium (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | Copper (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | Cyanide | < 0.002 | mg/L | * APHA 4500-CN E | 0.002 | | Total Hardness as CaCO3 | 54 | mg/L | LTM-W-038 | 2 | | Iron (dissolved) | 0.09 | mg/L | APHA 3030 B/3120 B | 0.01 | | Lead (dissolved) | 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | Magnesium (dissolved) | 5.36 | mg/L | APHA 3030 B/3120 B | 2 | | Manganese (dissolved) | 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | Mercury (dissolved) | < 0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | Nickel (dissolved) | 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | Nitrogen, total | 5 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | Phosphorus, Total | 0.04 | mg/L | LTM-W-030 | 0.01 | | Silver (dissolved) | <0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | Total Dissolved Solids | <2 | mg/L | LTM-W-035 | 2 | | Total Kjeldahl Nitrogen | 5 | mg/L | LTM-W-034 | 0.2 | NGH Environmental 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith ## ENVIRONMENTAL AND ANALYTICAL LABORATORIES Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 NATA Accredited Laboratory Accredited for compliance with ISO/IEC Number: 9597 17025 - Testing LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 9 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order # Date Analysis Commenced 29-September-2023 | | | | | | _, ~·F | | |------------|-------------------------------|-------------------------------|---------------|---------|-----------------------------|-----------------------| | EAL ID | Client ID. Date/Time sample | <u>Test</u>
taken | <u>Result</u> | (units) | Method Reference | Limit of
Reporting | | 23Sep-0258 | SSC-IS 27.09.23 2.09pm | | | | | | | | • | Total Suspended Solids | 5 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0259 | TR-RS 28.09.23 12.52pr | m | | | | | | | | Aluminium (dissolved) | <0.03 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | < 0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | 3.04 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | < 0.00001 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Copper (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | <0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | | Total Hardness as CaCO3 | 8 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | 0.02 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | Lead (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | < 0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Nickel (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | | | | | | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au
http://science-health.csu.edu.au/eal **NGH Environmental** 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith NATA Accredited Laboratory Tuesday, November 14, 2023 Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 10 of 17 For all enquiries related to this report please quote document number: 2309-0088 **Facility:** Order# **Date Analysis Commenced** 29-September-2023 | EAL ID | Client ID. Date/Time sample t | <u>Test</u>
aken | Result | (units) | Method Reference | Limit of
Reporting | |------------|--------------------------------|-------------------------------|----------|---------|----------------------|-----------------------| | 23Sep-0259 | TR-RS 28.09.23 12.52pn | 1 | | | | | | | r | Phosphorus, Total | 0.03 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | <0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | 11 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | < 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0260 | YK-IS(d/s)
28.09.23 1.13pm | | | | | | | | | Aluminium (dissolved) | 0.34 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | <0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | 0.007 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Copper (dissolved) | < 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | < 0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | | Total Hardness as CaCO3 | <2 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | 0.26 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | Lead (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | 0.003 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | <0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 **NGH Environmental** 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 11 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order # Date Analysis Commenced 29-September-2023 | EAL ID | Client ID. | <u>Test</u> | Result | (units) | Method Reference | Limit of | |------------|-------------------------------|-------------------------------|----------|---------|-----------------------------|-----------| | | Date/Time sample | taken | | | 1 | Reporting | | 23Sep-0260 | YK-IS(d/s)
28.09.23 1.13pm | | | | | | | | | Nickel (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Phosphorus, Total | 0.02 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | <0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | 9 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0261 | NZG-IS 28.09.23 1.36pm | | | | | | | | | Aluminium (dissolved) | 0.19 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | <0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | 3.04 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | <0.00001 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Copper (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | < 0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | | Total Hardness as CaCO3 | 8 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | 0.14 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | | | | | | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 **NGH Environmental** 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith Accredited for compliance with ISO/IEC **NATA Accredited Laboratory** Number: 9597 17025 - Testing ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 12 of 17 For all enquiries related to this report please quote document number: 2309-0088 **Facility:** Order# **Date Analysis Commenced** 29-September-2023 | EAL ID | Client ID. Date/Time sample t | <u>Test</u> | Result | (units) | Method Reference | Limit of
Reporting | |------------|--------------------------------|-------------------------------|----------|---------|-----------------------------|-----------------------| | 23Sep-0261 | NZG-IS
28.09.23 1.36pm | | | | | | | | • | Lead (dissolved) | 0.004 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | <0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Nickel (dissolved) | < 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Phosphorus, Total | 0.04 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | <0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | <2 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0262 | YK-IS 28.09.23 1.52pm | | | | | | | | | Aluminium (dissolved) | 0.49 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | <0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | <0.00001 | mg/L | APHA 3030 B/3120 B | 0.0000 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal NGH Environmental 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith Tuesday, November 14, 2023 NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 13 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order # Date Analysis Commenced 29-September-2023 | water | | | Chent | | 27-3cptcm | 2022 | |------------|--------------------------------|--------------------------------|-----------|---------|-----------------------------|-----------------------| | EAL ID | Client ID. Date/Time sample t | <u>Test</u>
aken | Result | (units) | Method Reference | Limit of
Reporting | | 23Sep-0262 | YK-IS 28.09.23 1.52pm | | | | | | | | | Copper (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | <0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | | Total Hardness as CaCO3 | <2 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | 0.32 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | Lead (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | 0.004 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | < 0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Nickel (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | 0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Phosphorus, Total | 0.11 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | <0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | <2 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0263 | YK-RS
28.09.23 2.03pm | | | | | _ | | | | Aluminium (dissolved) | 0.69 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### NGH Environmental 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 14 of 17 For all enquiries related to this report please quote document number: 2309-0088 <u>Facility:</u> <u>Order #</u> <u>Date Analysis Commenced</u> 29-September-2023 | | | | | | 1 | | |------------|--------------------------------|-------------------------------|-----------|---------|-----------------------------|-----------------------| | EAL ID | Client
ID. Date/Time sample t | <u>Test</u> | Result | (units) | Method Reference | Limit of
Reporting | | 23Sep-0263 | YK-RS
28.09.23 2.03pm | | | | | | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | <0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | < 0.00001 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Copper (dissolved) | 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | <0.002 | mg/L | * APHA 4500-CN E | 0.002 | | | | Total Hardness as CaCO3 | <2 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | 0.53 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | Lead (dissolved) | 0.004 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | 0.007 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | < 0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Nickel (dissolved) | 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Phosphorus, Total | 0.08 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | < 0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | <2 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | 0.003 | mg/L | APHA 3030 B/3120 B | 0.002 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### **NGH Environmental** 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 15 of 17 For all enquiries related to this report please quote document number: 2309-0088 <u>Facility:</u> <u>Order #</u> <u>Date Analysis Commenced</u> 29-September-2023 | EAL ID | Client ID. Date/Time sample t | <u>Test</u>
taken | Result | (units) | Method Reference | Limit of
Reporting | |------------|--------------------------------|-----------------------|-----------|---------|----------------------|-----------------------| | 23Sep-0264 | DUP01 28.09.23 12.52pm | n | | | | | | | | Aluminium (dissolved) | <0.03 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | <0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Chromium (dissolved) | <0.00001 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Copper (dissolved) | < 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Iron (dissolved) | 0.02 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | Lead (dissolved) | 0.004 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Manganese (dissolved) | 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | <0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Nickel (dissolved) | < 0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Silver (dissolved) | < 0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Zinc (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | 23Sep-0265 | Water Blank
27.09.23 | | | | | | | | | Aluminium (dissolved) | <0.03 | mg/L | APHA 3030 B/3120 B | 0.03 | | | | Ammonia as N | <0.1 | mg/L | LTM-W-042 | 0.1 | | | | Arsenic (dissolved) | <0.0003 | mg/L | APHA 3030 B/3120 B | 0.0003 | | | | Cadmium (dissolved) | < 0.00002 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Calcium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Chromium (dissolved) | <0.00001 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Copper (dissolved) | < 0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | | | | Cyanide | < 0.002 | mg/L | * APHA 4500-CN E | 0.002 | Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal NGH Environmental 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith NATA Accredited Laboratory Tuesday, November 14, 2023 Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 16 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order # Date Analysis Commenced 29-September-2023 Sample TypeCollected ByDate ReceivedWaterClient29-September-2023 | EAL ID | Client ID. Date/Time sample t | <u>Test</u>
taken | <u>Result</u> | (units) | Method Reference | Limit of
Reporting | |------------|--------------------------------|--------------------------------|---------------|---------|-----------------------------|-----------------------| | 23Sep-0265 | Water Blank
27.09.23 | | | | | | | | | Total Hardness as CaCO3 | <2 | mg/L | LTM-W-038 | 2 | | | | Iron (dissolved) | <0.01 | mg/L | APHA 3030 B/3120 B | 0.01 | | | | Lead (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Magnesium (dissolved) | <2.00 | mg/L | APHA 3030 B/3120 B | 2 | | | | Manganese (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Mercury (dissolved) | <0.00003 | mg/L | APHA 3030 B/3120 B | 0.0000 | | | | Nickel (dissolved) | <0.001 | mg/L | APHA 3030 B/3120 B | 0.001 | | | | Nitrogen, total | <0.2 | mg/L | * APHA 4500-Norg B + 4110 B | 0.2 | | | | Nitrate/Nitrite as N | <0.1 | mg/L | LTM-W-014 | 0.1 | | | | Ortho-Phosphate as P | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Phosphorus, Total | <0.01 | mg/L | LTM-W-030 | 0.01 | | | | Silver (dissolved) | < 0.00002 | mg/L | * APHA 3030 B/3120 B | 0.0000 | | | | Total Dissolved Solids | <2 | mg/L | LTM-W-035 | 2 | | | | Total Kjeldahl Nitrogen | <0.2 | mg/L | LTM-W-034 | 0.2 | | | | Total Suspended Solids | <0.2 | mg/L | APHA 2540 D | 0.2 | | | | Zinc (dissolved) | <0.002 | mg/L | APHA 3030 B/3120 B | 0.002 | Note: ^{*} NATA Accreditation does not cover the performance of this service. Locked Bag 588 Wagga Wagga NSW 2678 Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au http://science-health.csu.edu.au/eal Tuesday, November 14, 2023 **NATA Accredited Laboratory** Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing ### **NGH Environmental** 35 Kincaid Street Wagga Wagga NSW 2650 Attention: Nicola Smith #### LABORATORY ANALYSIS REPORT Report Number:2309-0088 Page 17 of 17 For all enquiries related to this report please quote document number: 2309-0088 Facility: Order# **Date Analysis Commenced** 29-September-2023 Sample Type **Date Received** Collected By Water Client 29-September-2023 EAL ID Method Reference Limit of Client ID. **Test** Result (units) Reporting Date/Time sample taken Signed Michael Glazier, Laboratory Manager. All samples analysed as received. All soil results are reported on a dry basis. The EAL takes no responsibility for the end use of results within this report. This report shall not be reproduced except in full. This report replaces any previously issued report Mflir | ٦ | | |--------|----------| | Œ | | | S
S | sity | | rle | /er | | ha | <u>_</u> | | | → | | | | | | | | | | | 220020000000000000000000000000000000000 | | Shipped States | | 0110 | CL | CLC | | | | | 2000 | STREET, STREET | 2012/2018 | |-----------------------|---------------------|-----------------|--------|----------------|---------------------------------------|---|-----------|----------------|----------------|----------------|-------------------|-----------|--|----------|-----------|---|------|--|-----------| | CLIENT: | NGH Pty Ltd | |
 | | | | | | | באר
ארו
ארו | מסקון | ANALT ES RECOIRED Complete & uck as required | & IICK a | s reduire | 8 | _ | | | | CONTACT: | Nicola Smith | | J | | | | | | | ,sA , | from to | | s | | | | | | | | | 35 Kincaid Street | | | | | , , | s | | | IA) : | (e | | oru | | | | | | | | ADDRESS: | Wagga Wagga | | | | | ι | oru | • | | tals | | |
yds | | | |
 | ****** | | | | ABN: 31 124 444 622 | 622 | | | | ıəbo | yds | | | əΜ | | | oyo | | | | | | | | TELEPHONE: | 0410 411 660 | 099 | E-mail | nicola.s@ngł | nicola.s@nghconsulting.com.au | | ьро | | | bevio | | sino | A evit | | | *************************************** |
 | | | | SAMPLE IDENTIFICATION | NATURE OF
SAMPLE | DATE
SAMPLED | TIME | CONTAINER TYPE | NUMBER OF
CONTAINERS | lstoT | lstoT | Cyan | Total
Total | Disso
Cd, C | Toal I | mmA | Кеас | | | |
 | | | | WC-RS | Water | 27/9/23/2: | 12:43 | SAR. | ^ | > | > | 7 | 2 | > | | > | | | | | | | | | MC-IS | Water | 27 19 23 | 25.2 | 7 | * | > | > | 2. | 7 | 7 | > | 1 | 7 | | | | | | | | SI-90 | Water | 27 9/23 1: | 00:- | 3 | 0 | >> | > | 7 | > | 7 | 1 | > | 7 | | | | | | | | YR1-RS | Water | 27/0/23 | . 18 | ţ. | U | 2. | <u></u> | 2 | 5 | 7 |) | > | 1 | | | | | | | | SI-9HT | Water | 27/9/2 | 58:1: | 47 | 4 | > | 7 | 2 | 7 | 1 | 7 | 1 | | | | | | | | | YR2-RS | Water | 27/9(231:5 | L5:1 | 27 | 1.7 | > | 7 | 7 | 7 | | 7 | \ <u></u> | 7 | | | | | | | | SI-OSS | Water | 27/0/22 | 60:72 | , , | ser, | > | \\ \alpha | 7 | 7 | \ <u></u> | | 1 | 7 | | | | | | | | TR-RS | Water | 28 9 23 | 25:7 | 16.0 | 47 | 7 | | 7. | 7 | 1 | 1 | 1 | 1 | | | | | | | | YK-IS (d/s) | Water | 28 1912 | 51:13 | 4 | 47 | > | 13 | 7 | , | > | 7 | 1 | 1 | | | | | | · | | NZG-IS | Water | 28/9/23 | 95:11 | 1 | 1 | × | | 7 | | 7 | | 1 | | | | | | | | | YK-IS | Water | 28/9/23 | 2.5:1 | * | · · · · · · · · · · · · · · · · · · · | 1 | | , | / | 7 | | | | | | | | | | | YK-RS | Water | 28/9/2 | 2.03 | , ^ | 7) . | | 1 | 7 | / | 7 | 7 | \ <u></u> | | | | | | | | | DUP01 | Water | 23 a 23 | 12:52 | 4 | and from | | | | | _ | | | | | | |
 | | | | WATER BLANK | Water | and the second | -wath, | 1 | (S) | > | 7 | 7 | 7 | > | 3 | , | | | | | | - | | | 2 | | · <u> </u> | |--------------|------------------|--|--------------| | TIME | 2:20 | | 29/1/8.20 | | DATE | 21/9/23 | | 1467 | | | - 10 | | | | | | | | | | | | | | LION | | | | | ORGANISATION | | | | | 0 | | | | | | | | | | | NGH Pty Ltd | | | | | NGF | | 7 | | SIGNATURE | WY | | naft | | S | 7 | | K | | NAME | MABULA | | J.may bury | | Ž | うなない | Delivery | Mar | | | 7 | De | | | | | icable | | | | BY: | ı rt
Vote # if appl | | | | RELINQUISHED BY: | Mode of Transport
Include Consignment Note # # applicable | RECEIVED BY: | | | RELING | Mode of | RECEIV | **www.csu.edu.au** CRICOS Provider Numbors for Charles Sturt University are 00005F (NSW), 01947G (VIC) and 02960B (ACT). ABN: 83 878 708 551 # **APPENDIX D RPD TABLE** | | | | Al (mg/L) | As (mg/L) | Cd (mg/L) | Cr (mg/L) | Cu (mg/L) | Cyanide (mg/L) | Fe (mg/L) | Pb (mg/L) | Mn (mg/L) | Hg (mg/L) | Ni (mg/L) | Ag (mg/L) | Zn (mg/ | |------------|--------------------|---|----------------|--------------------|----------------------|----------------------|--------------------|------------------|----------------|------------------|------------------|----------------------|------------------|----------------------|-------------| | | Event 1 | DUP01 | 0.03 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.06 | 0.0005 | 0.003 | 0.000015 | 0.0005 | 0.00001 | 0.001 | | | | YR1-IS | 0.03 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.06 | 0.0005 | 0.003 | 0.000015 | 0.0005 | 0.00001 | 0.001 | | | | RPD% - Acceptable Range | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | | Event 2 | DUP01 | <0.03 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.005 | 0.0005 | 0.001 | 0.000015 | 0.0005 | 0.00001 | 0.001 | | | | WC-IS | <0.03 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.005 | 0.0005 | 0.002
67% | 0.000015 | 0.0005 | 0.00001 | 0.001 | | | Event 3 | RPD% - Acceptable Range except Mn DUP01 | 0%
0.015 | 0%
0.00015 | 0%
0.00001 | 0% | 0%
0.0001 | 0%
0.001 | 0%
0.005 | 0%
0.0005 | 0.0005 | 0%
0.000015 | 0%
0.0005 | 0%
0.00001 | 0%
0.001 | | | LVEITES | Yk-IS (D/S | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.005 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.001 | | | | RPD% - Acceptable Range | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | DUP01 | Event 4 | DUP01 | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.005 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.001 | | | | WC-RS | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.005 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.001 | | | Tyont F | RPD% - Acceptable Range | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | | Event 5 | DUP01
WC-RS | 0.015
0.015 | 0.00015
0.00015 | 0.00001
0.00001 | 0.000005
0.000005 | 0.0001
0.0001 | 0.001
0.001 | 0.005
0.005 | 0.0005
0.0005 | 0.0005
0.0005 | 0.000015
0.000015 | 0.0005
0.0005 | 0.00001
0.00001 | 0.001 | | | | RPD% - Acceptable Range | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0.00 | | | Event 6 | DUP01 | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.005 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | WC-RS | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.005 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.001 | | | | RPD% - Acceptable Range | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | | | Event 7 | DUP01 | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.005 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.001 | | | | WC-RS | 0.015
0% | 0.00015
0% | 0.00001
0% | 0.00005 | 0.0001
0% | 0.001
0% | 0.005
0% | 0.0005
0% | 0.0005
0% | 0.000015
0% | 0.0005
0% | 0.00001
0% | 0.001 | | | Event 8 | RPD% - Acceptable Range DUP01 | 1.79 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.73 | 0.0005 | 0.011 | 0.000015 | 0.0005 | 0.00001 | 0.002 | | | | SSC-IS | 1.79 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.73 | 0.0005 | 0.011 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | RPD% - Acceptable Range | 3.409090909 | 0% | 0% | 0% | 0% | 0% | 5.633802817 | 0% | 0% | 0% | 0% | 0% | 0% | | | Event 9 | DUP01 | 0.35 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.06 | 0.0005 | 0.003 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | WC-RS | 0.36 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.08 | 0.0005 | 0.004 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | RPD% - Acceptable Range | 2.82 | 0% | 0% | 0% | 0% | 0% | 28.57 | 0% | 0% | 0% | 0% | 0% | 0% | | | Event 10 | DUP01 | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.09 | 0.0005 | 0.005 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | WC-RS | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.08 | 0.0005 | 0.004 | 0.000015 | 0.0005 | 0.00001 | 0.01 | | | Event 11 | RPD% - Acceptable Range DUP01 | 0%
0.03 | 0%
0.00015 | 0%
0.00001 | 0% | 0%
0.0001 | 0%
0.001 | 11.76
0.02 | 0%
0.0005 | 0%
0.0005 | 0%
0.000015 | 0%
0.0005 | 0%
0.00001 | 0% | | | Lveiit II | WC-RS | 0.03 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.02 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | RPD% - Acceptable Range | 0% | 0% | 0% | 0% | 0% | 0% | 0.02 | 0% | 0% | 0% | 0% | 0% | 0% | | | Event 12 | DUP01 | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.02 | 0.0005 | 0.006 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | WC-RS | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.005 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | RPD% - Acceptable Range | 0% | 0% | 0% | 0% | 0% | 0% | 60% | 0% | 85% | 0% | 0% | 0% | 33% | | | | DUP01 | 0.03 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.02 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.002 | | | Event 13 | WC-IS | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.02 | 0.0005 | 0.0005 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | RPD% - Acceptable Range | 33% | 0% | 0% | 0% | 0% | 0% | 0% | 0,0005 | 0% | 0% | 0% | 0% | 20% | | | Event 14 | DUP01
WC-RS | 0.04
0.04 | 0.00015
0.00015 | 0.00001
0.00001 | 0.000005
0.000005 | 0.0001
0.0001 | 0.001
0.001 | 0.02
0.03 | 0.0005 | 0.0005
0.0005 | 0.000015
0.000015 | 0.0005
0.0005 | 0.00001
0.00001 | 0.00 | | | Evolit 14 | RPD% - Acceptable Range | 0% | 0% | 0.00007 | 0% | 0% | 0% | 20% | 0.0003 | 0.0003 | 0% | 0% | 0.00007 | 92% | | | | DUP01 | 0.08 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.06 | 0.0005 | 0.001 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | Event 15 | WC-RS | 0.11 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.09 | 0.0005 | 0.001 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | RPD% - Acceptable Range | 16% | 0% | 0% | 0% | 0% | 0% | 20% | 0% | 0% | 0% | 0% | 0% | 0% | | | | DUP01 | 0.67 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.39 | 0.0005 | 0.004 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | Event 16 | WC-IS | 0.6 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.34 | 0.0005 | 0.004 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | RPD% - Acceptable Range | 6%
0.4 | 0% | 0% | 0% | 0% | 0% | 7% | 0% | 0% | 0% | 0% | 0% | 33% | | | Event 17 | DUP01
YK-RS | 0.4 | 0.00015
0.00015 | 0.00001
0.00001 | 0.000005
0.000005 | 0.0001
0.0001 | 0.001
0.001 | 0.3
0.23 | 0.0005
0.0005 | 0.011
0.009 | 0.000015
0.000015 | 0.0005
0.0005 | 0.00001
0.00001 | 0.00 | | | Event 17 | RPD% - Acceptable Range | 18% | 0.00073 | 0.00007 | 0.000003 | 0.0007 | 0% | 13% | 0.0003 | 10% | 0% | 0% | 0% | 0.00 | | | | DUP01 | 0.72 | 0.00015 | 0.00001 |
0.000005 | 0.0001 | 0.001 | 0.49 | 0.001 | 0.021 | 0.000015 | 0.002 | 0.00001 | 0.00 | | | Event 18 | YK-RS | 0.71 | 0.00015 | 0.00001 | 0.000005 | 0.0001 | 0.001 | 0.47 | 0.0005 | 0.037 | 0.000015 | 0.001 | 0.00001 | 0.02 | | | | RPD% - Acceptable Range | 1% | 0% | 0% | 0% | 0% | 0% | 2% | 33% | 28% | 0% | 33% | 0% | 58% | | | | DUP01 | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.001 | 0.001 | 0.02 | 0.004 | 0.001 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | Event 19 | TR-RS | 0.015 | 0.00015 | 0.00001 | 0.000005 | 0.001 | 0.001 | 0.02 | 0.002 | 0.002 | 0.000015 | 0.0005 | 0.00001 | 0.00 | | | | RPD% - Acceptable Range | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 33% | 33% | 0% | 0% | 0% | 0% | | | Event 1 | Nothing above LOR | <0.02 | <0.0003 | <0.00002 | <0.0001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.0 | | | Event 2 | Nothing above LOR | <0.02 | <0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.0 | | iter Blank | Event 3 | Nothing above LOR | <0.03 | <0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.0 | | Rei Dialik | Event 4 | Nothing above LOR | <0.03 | <0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.0 | | | Event 5 | Nothing above LOR | <0.03 | <0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.0 | | | Event 6 | Nothing above LOR | <0.03 | <0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.0 | | | Event 7
Event 8 | Nothing above LOR Nothing above LOR | <0.03
<0.03 | <0.0003
<0.0003 | <0.00002
<0.00002 | <0.00001 | <0.0002
<0.0002 | <0.002
<0.002 | <0.01
<0.01 | <0.001
<0.001 | <0.001
<0.001 | <0.00003 | <0.001 | <0.00002
<0.00002 | <0.0 | | | Event 9 | Nothing above LOR Nothing above LOR | <0.03 | <0.0003 | <0.00002 | <0.00001
<0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003
<0.00003 | <0.001
<0.001 | <0.00002 | <0.0 | | | | Nothing above LOIX | \0.03 | -0.0003 | -0.00002 | -0.0000 I | *U.UUUZ | ~U.UUZ | \U.U1 | -U.UU I | -U.UU1 | -0.00003 | VU.UU I | + | | | | Event 10 | Nothing above LOR | <0.03 | <0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | < 0.001 | <0.001 | < 0.00003 | < 0.001 | < 0.00002 | <0.0 | | Event 12 | Nothing above LOR | <0.03 | <0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.002 | |----------|-------------------|-------|----------|----------|----------|---------|--------|-------|--------|--------|----------|--------|----------|--------| | Event 13 | Nothing above LOR | <0.03 | < 0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.002 | | Event 14 | Nothing above LOR | <0.03 | < 0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.002 | | Event 15 | Nothing above LOR | <0.03 | < 0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.002 | | Event 16 | Nothing above LOR | <0.03 | < 0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.002 | | Event 17 | Nothing above LOR | <0.03 | < 0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.002 | | Event 18 | Nothing above LOR | <0.03 | < 0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.002 | | Event 19 | Nothing above LOR | <0.03 | <0.0003 | <0.00002 | <0.00001 | <0.0002 | <0.002 | <0.01 | <0.001 | <0.001 | <0.00003 | <0.001 | <0.00002 | <0.002 | RPD % $$|(X 2 - X 1)|/((X 2 + X 1)/2)$$ #### How to calculate the Relative Percent Difference (RPD) The basic equation for RPD is $RPD = \frac{\mid R1 - R2 \mid}{\left(\frac{R1 + R2}{2}\right)} \times 100,$ where R1 is sample 1, and R2 is sample 2. R1 and R2 are your sample and duplicate values. Basically, this equation has you calculate the RPD by dividing the difference between the sample and duplicate by the average of the two. Using absolute value signs ensures the RPD doesn't end up as a negative percentage, which wouldn't make sense when looking for a percent difference. The equation you plug into Excel looks like this: =ABS((B3-C3)/AVERAGE(B3:C3)*100) ABS stands for Absolute Value. Using the cell labels in the equation, as seen above (B3, C3), allows you to use the equation down for all your sample/duplicate pairs so you don't have to write a new equation each time. You can do this by clicking on the cell with the equation in it, then click and drag the bottom right corner of the cell down for the rest of your samples. ## **APPENDIX E CALIBRATION CERTIFICATES** Instrument Serial No. YSI Pro DSS 15J101503 ### Air-Met Scientific Pty Ltd 1300 137 067 | Item | Test | Pass | Comments | |---------------|----------------------|--|----------| | Battery | Charge Condition | 1 | 1 4 | | • | Fuses | 1 | 1/2 | | | Capacity | 1 | | | | Recharge OK? | ✓ | | | Switch/keypad | Operation | ✓ | 8 8 | | Display | Intensity | 1 | · · | | | Operation (segments) | ✓ | | | Grill Filter | Condition | 1 | | | | Seal | ✓ | | | PCB | Condition | 1 | | | Connectors | Condition | 1 | | | Sensor | 1. pH/ORP | 1 | | | | 2. Turbidity | 1 | | | | 3. Conductivity | 1 | | | | 4. D.O | 1 | | | | 5. Temp | 1 | | | | 6. Depth | 1 | | | Alarms | Beeper | | | | | Settings | | | | Software | Version | | | | Data logger | Operation | 1 to 1 | | | Download | Operation | | | | Other tests: | | The same of sa | | ### Certificate of Calibration This is to certify that the above instrument has been calibrated to the following specifications: | Sensor | Serial no | Standard Solutions | Certified | Solution Bottle
Number | Instrument Reading | |--------------|-----------|--------------------|-----------|---------------------------|--------------------| | 2. pH 7.00 | | pH 7.00 | | 393774 | pH 7.02 | | 3. pH 4.00 | | pH 4.00 | | 399527 | pH 3.98 | | 4. ORP | | 235.6 mV | | A405006/B398193 | 235.4 mV | | 5. SPC | | 2760uS/cm | | 385789 | 2764 uS/cm | | 6. D.O | | 0% | | 391223 | -0.20% | | 7. Turbidity | | 100 NTU | | 396426 | 99.60 NTU | | 8. Temp | | 22.0 °C | | MultiTherm | 22.0 °C | Calibrated by: **Guido Camera** Calibration date: 20/09/2023 Next calibration due: 18/03/2024